Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Geodetic Reference System 1980
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Derived quantities== ; Derived geometrical constants (all rounded) :Flattening = <math>f</math> = 0.003 352 810 681 183 637 418; :Reciprocal of flattening = <math>1/f</math> = 298.257 222 100 882 711 243; :Semi-minor axis = Polar Radius = <math>b</math> = 6 356 752.314 140 347 m; :Aspect ratio = <math>b/a</math> = 0.996 647 189 318 816 363; :[[Earth radius#Mean radius: R1|Mean radius]] as defined by the [[International Union of Geodesy and Geophysics]] (IUGG): <math>R_1 = (2a+b)/3</math> = 6 371 008.7714 m; :[[Earth radius#Authalic radius|Authalic mean radius]] = <math>R_2</math> = 6 371 007.1809 m; :Radius of a sphere of the same volume = <math>R_3 = (a^2b)^{1/3}</math> = 6 371 000.7900 m; :Linear eccentricity = <math>c = \sqrt{a^2-b^2}</math> = 521 854.0097 m; :[[Eccentricity (mathematics)|Eccentricity]] of elliptical section through poles = <math>e = \frac{\sqrt{a^2-b^2}}{a}</math> = 0.081 819 191 0428; :Polar radius of curvature = <math>a^2/b</math> = 6 399 593.6259 m; :Equatorial radius of curvature for a meridian = <math>b^2/a</math> = 6 335 439.3271 m; :Meridian quadrant = 10 001 965.7292 m; ; Derived physical constants (rounded) :Period of rotation ([[sidereal day]]) = <math>2\pi/\omega</math> = 86 164.100 637 s The formula giving the eccentricity of the GRS80 spheroid is:<ref name=Moritz1980/> :<math>e^2 = \frac {a^2 - b^2}{a^2} = 3J_2 + \frac4{15} \frac{\omega^2 a^3}{GM} \frac{e^3}{2q_0},</math> where :<math> 2q_0 = \left(1 + \frac3{e'^2}\right) \arctan e' - \frac3{e'}</math> and <math>e' = \frac{e}{\sqrt{1 - e^2}} </math> (so <math>\arctan e' = \arcsin e</math>). The equation is solved iteratively to give :<math>e^2 = 0.00669\,43800\,22903\,41574\,95749\,48586\,28930\,62124\,43890\,\ldots</math> which gives :<math>f = 1/298.25722\,21008\,82711\,24316\,28366\,\ldots.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)