Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Geographic coordinate conversion
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== From geodetic to ECEF coordinates === [[Image:Geodetic latitude and the length of Normal.svg|thumb|The length PQ, called the ''prime vertical radius'', is <math>N(\phi)</math>. The length IQ is equal to <math>\, e^2 N(\phi) </math>. <math>R = (X,\, Y,\, Z)</math>.]] [[Geodetic coordinates]] (latitude <math>\ \phi</math>, longitude <math>\ \lambda</math>, height <math>h</math>) can be converted into [[ECEF]] coordinates using the following equation:<ref name="gps-chap10">{{cite book|title=GPS - theory and practice|author1=B. Hofmann-Wellenhof |author2=H. Lichtenegger |author3=J. Collins |isbn=3-211-82839-7|page=282|others=Section 10.2.1|year=1997 }}</ref> : <math>\begin{align} X & = \left( N(\phi) + h\right)\cos{\phi}\cos{\lambda} \\ Y & = \left( N(\phi) + h\right)\cos{\phi}\sin{\lambda} \\ Z & = \left( \frac{b^2}{a^2} N(\phi) + h\right)\sin{\phi} \\ & = \left( (1 - e^2) N(\phi) + h\right)\sin{\phi} \\ & = \left( (1 - f)^2 N(\phi) + h\right)\sin{\phi} \end{align}</math> where : <math> N(\phi) = \frac{a^2}{\sqrt{a^2 \cos^2 \phi + b^2 \sin^2 \phi }} = \frac{a}{\sqrt{1 - e^2\sin^2\phi}} = \frac{a}{\sqrt{1 - \frac{e^2}{1 + \cot^2 \phi}}}, </math> and <math>a</math> and <math>b</math> are the equatorial radius ([[semi-major axis]]) and the polar radius ([[semi-minor axis]]), respectively. <math>e^2 = 1 - \frac{b^2}{a^2}</math> is the square of the first numerical eccentricity of the ellipsoid. <math>f = 1 - \frac{b}{a}</math> is the flattening of the ellipsoid. The ''[[prime vertical radius of curvature]]'' <math>\, N(\phi) </math> is the distance from the surface to the Z-axis along the ellipsoid normal. ====Properties==== The following condition holds for the longitude in the same way as in the geocentric coordinates system: :<math>\frac{X}{\cos\lambda} - \frac{Y}{\sin\lambda} = 0.</math> And the following holds for the latitude: :<math>\frac{p}{\cos\phi} - \frac{Z}{\sin\phi} - e^2 N(\phi) = 0,</math> where <math>p = \sqrt{X^2 + Y^2}</math>, as the parameter <math>h</math> is eliminated by subtracting :<math>\frac{p}{\cos\phi} = N + h</math> and :<math>\frac{Z}{\sin\phi} = \frac{b^2}{a^2}N + h.</math> The following holds furthermore, derived from dividing above equations: :<math>\frac{Z}{p} \cot \phi = 1 - \frac{e^2 N}{N + h}.</math> ====Orthogonality==== The [[Orthogonal coordinates|orthogonality]] of the coordinates is confirmed via differentiation: :<math>\begin{align} \begin{pmatrix} dX \\ dY \\ dZ \end{pmatrix} &= \begin{pmatrix} -\sin\lambda & -\sin\phi \cos\lambda & \cos\phi \cos\lambda \\ \cos\lambda & -\sin\phi \sin\lambda & \cos\phi \sin\lambda \\ 0 & \cos\phi & \sin\phi \\ \end{pmatrix} \begin{pmatrix} dE \\ dN \\ dU \end{pmatrix}, \\[3pt] \begin{pmatrix} dE \\ dN \\ dU \end{pmatrix} &= \begin{pmatrix} \left(N(\phi) + h\right) \cos\phi & 0 & 0 \\ 0 & M(\phi) + h & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} \begin{pmatrix} d\lambda \\ d\phi \\ dh \end{pmatrix}, \end{align}</math> <!-- : <math>\begin{align} & \big(dX,\, dY,\, dZ\big) \\[6pt] = & \big(-\sin\phi \cos\lambda,\, -\sin\phi \sin\lambda,\, \cos\phi\big) \left(M(\phi) + h\right)\, d\phi \\[6pt] &{}+ \big(-\sin\lambda,\, \cos\lambda,\, 0\big)\left(N(\phi) + h\right) \cos\phi\, d\lambda \\[6pt] &{}+ \big(\cos\lambda \cos\phi,\, \cos\phi \sin\lambda,\, \sin\phi\big)\, dh, \end{align}</math> --> where :<math> M(\phi) = \frac{a\left(1 - e^2\right)}{\left(1 - e^2 \sin^2 \phi\right)^\frac{3}{2}} = N(\phi) \frac{1 - e^2}{1 - e^2\sin^2\phi} </math> (see also "[[Meridian arc#Definition|Meridian arc on the ellipsoid]]"). <!-- The infinitesimal length caused by latitude and longitude is calculated as follows (see also "[[Meridian arc#Meridian distance on the ellipsoid|Meridian arc on the ellipsoid]]"): : <math> ds^2 = \left(\frac{a\left(1 - e^2\right)}{\left(1 - e^2 \sin^2\phi\right)^\frac{3}{2}} + h\right)^2 d\phi^2 + \left(\frac{a}{\sqrt{1 - e^2 \sin^2\phi}} + h\right)^2 \cos^2\phi\, d\lambda^2 . </math> -->
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)