Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gram–Schmidt process
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Euclidean space=== Consider the following set of vectors in <math>\mathbb{R}^2</math> (with the conventional [[Inner product space#Euclidean vector space|inner product]]) <math display="block">S = \left\{\mathbf{v}_1=\begin{bmatrix} 3 \\ 1\end{bmatrix}, \mathbf{v}_2=\begin{bmatrix}2 \\2\end{bmatrix}\right\}.</math> Now, perform Gram–Schmidt, to obtain an orthogonal set of vectors: <math display="block">\mathbf{u}_1=\mathbf{v}_1=\begin{bmatrix}3\\1\end{bmatrix}</math> <math display="block"> \mathbf{u}_2 = \mathbf{v}_2 - \operatorname{proj}_{\mathbf{u}_1} (\mathbf{v}_2) = \begin{bmatrix}2\\2\end{bmatrix} - \operatorname{proj}_{\left[\begin{smallmatrix}3 \\ 1\end{smallmatrix}\right]} {\begin{bmatrix}2\\2\end{bmatrix}} = \begin{bmatrix}2\\2\end{bmatrix} - \frac{8}{10} \begin{bmatrix} 3 \\1 \end{bmatrix} = \begin{bmatrix} -2/5 \\6/5 \end{bmatrix}. </math> We check that the vectors <math>\mathbf{u}_1</math> and <math>\mathbf{u}_2</math> are indeed orthogonal: <math display="block">\langle\mathbf{u}_1,\mathbf{u}_2\rangle = \left\langle \begin{bmatrix}3\\1\end{bmatrix}, \begin{bmatrix} -2/5 \\ 6/5 \end{bmatrix} \right\rangle = -\frac{6}{5} + \frac{6}{5} = 0,</math> noting that if the [[dot product]] of two vectors is 0 then they are orthogonal. For non-zero vectors, we can then normalize the vectors by dividing out their sizes as shown above: <math display="block">\mathbf{e}_1 = \frac{1}{\sqrt {10}}\begin{bmatrix}3\\1\end{bmatrix}</math> <math display="block">\mathbf{e}_2 = \frac{1}{\sqrt{40 \over 25}} \begin{bmatrix}-2/5\\6/5\end{bmatrix} = \frac{1}{\sqrt{10}} \begin{bmatrix}-1\\3\end{bmatrix}. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)