Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Granularity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Molecular dynamics== In [[molecular dynamics]], [[molecular dynamics#Coarse-graining and reduced representations|coarse graining]] consists of replacing an atomistic description of a biological molecule with a lower-resolution coarse-grained model that averages or smooths away fine details. Coarse-grained models have been developed for investigating the longer time- and length-scale dynamics that are critical to many biological processes, such as lipid membranes and proteins.<ref>{{cite journal |last1=Kmiecik |first1=S. |last2=Gront |first2=D. |last3=Kolinski |first3=M. |last4=Wieteska |first4=L. |last5=Dawid |first5=A. E. |last6=Kolinski |first6=A. |year=2016 |title=Coarse-Grained Protein Models and Their Applications |journal=[[Chemical Reviews]] |pmid=27333362 |volume=116 |issue=14 |pages=7898β936 |doi=10.1021/acs.chemrev.6b00163 |doi-access=free}}</ref> These concepts not only apply to biological molecules but also inorganic molecules. Coarse graining may remove certain [[degrees of freedom (physics and chemistry)|degrees of freedom]], such as the vibrational modes between two atoms, or represent the two atoms as a single particle. The ends to which systems may be coarse-grained is simply bound by the accuracy in the dynamics and structural properties one wishes to replicate. This modern area of research is in its infancy, and although it is commonly used in biological modeling, the analytic theory behind it is poorly understood.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)