Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Graphics tablet
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Types == There have been many attempts to categorize the technologies that have been used for graphic tablets: ; Passive tablets:Passive tablets make use of [[electromagnetic induction]] technology, where the horizontal and vertical wires of the tablet operate as both transmitting and receiving coils (as opposed to the wires of the RAND Tablet which only transmit). The tablet generates an electromagnetic signal, which is received by the [[LC circuit]] in the stylus. The wires in the tablet then change to a receiving mode and read the signal generated by the stylus. Modern arrangements also provide [[pressure]] sensitivity and one or more buttons, with the electronics for this information present in the stylus. On older tablets, changing the pressure on the stylus nib or pressing a button changed the properties of the LC circuit, affecting the signal generated by the pen, which modern ones often encode into the signal as a digital data stream. By using electromagnetic signals, the tablet is able to sense the stylus position without the stylus having to even touch the surface, and powering the pen with this signal means that devices used with the tablet never need batteries. Activslate 50, the model used with [[Promethean Ltd|Promethean]] white boards, also uses a hybrid of this technology.<ref>{{citation|title=ActivSlate 50 Product Specifications |publisher=Promethean Ltd. |date=December 2009 |url=http://www.prometheanworld.com/upload/pdf/activSlate_50_SS_12-09-V2.pdf |access-date=2010-05-12 |url-status=dead |archive-url=https://web.archive.org/web/20110720054652/http://www.prometheanworld.com/upload/pdf/activSlate_50_SS_12-09-V2.pdf |archive-date=2011-07-20 }}</ref> ; Active tablets: Active tablets differ in that the stylus used contains self-powered electronics that generate and transmit a signal to the tablet. These styluses rely on an internal battery rather than the tablet for their power, resulting in a bulkier stylus. Eliminating the need to power the pen means that such tablets may listen for pen signals constantly, as they do not have to alternate between transmit and receive modes, which can result in less jitter. ; Optical tablets: Optical tablets operate by a very small digital camera in the stylus and then doing pattern matching on the image of the paper. The most successful{{Citation needed|date=June 2014}} example is the technology developed by [[Anoto]]. ; Acoustic tablets:Early models were described as spark tablets—a small sound generator was mounted in the stylus, and the acoustic signal picked up by two microphones placed near the writing surface. Some modern designs are able to read positions in three dimensions.<ref>{{citation | title = AirPen Storage Notebook: PC NoteTaker | publisher = www.pegatech.com | date = 2005-06-15 | url = http://users.erols.com/rwservices/pens/biblio05.html#Pentel05 }}</ref><ref>{{citation | title = Hyperspace 3-D Digitizer | publisher = Mira Imaging, Incorporated | date = 1989-04-15 | url = http://users.erols.com/rwservices/pens/biblio90.html#Mira89 }}</ref> ; Capacitive tablets:These tablets have also been designed to use an [[Electrostatics|electrostatic]] or capacitive signal. Scriptel's designs are one example of a high-performance tablet detecting an electrostatic signal. Unlike the type of capacitive design used for [[touchscreen]]s, the Scriptel design is able to detect the position of the pen while it is in proximity to or hovering above the tablet. Many multi-touch tablets use capacitive sensing.<ref>{{citation | title = New Products: CAD Graphic Tablet | publisher = IEEE Communications, Vol 22 No 4 | date =1984-04-15 | url = http://dl.comsoc.org/comsocdl/?article=102552 }}</ref><ref>{{citation | last = Kable | first = Robert G. | title = Electrographic Apparatus | publisher = United States Patent 4,600,807 (full image) | date = 1986-07-15 | url = http://www.freepatentsonline.com/4600807.pdf }}</ref> For all these technologies, the tablet can use the received signal to also determine the distance of the stylus from the surface of the tablet, the tilt (angle from vertical) of the stylus, and other information in addition to the horizontal and vertical positions, such as clicking buttons of the stylus or the rotation of the stylus<!--e.g. Wacom Art Pen-->. Compared to touchscreens, a graphic tablet generally offers much higher precision, the ability to track an object which is not touching the tablet, and can gather much more information about the stylus, but is typically more expensive, and can only be used with the special stylus or other accessories. Some tablets, especially inexpensive ones aimed at young children, come with a corded stylus, using technology similar to older [[RAND Tablet|RAND tablets]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)