Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Group representation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == Consider the complex number ''u'' = e<sup>2Οi / 3</sup> which has the property ''u''<sup>3</sup> = 1. The set ''C''<sub>3</sub> = {1, ''u'', ''u''<sup>2</sup>} forms a [[cyclic group]] under multiplication. This group has a representation Ο on <math>\mathbb{C}^2</math> given by: :<math> \rho \left( 1 \right) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix} \qquad \rho \left( u \right) = \begin{bmatrix} 1 & 0 \\ 0 & u \\ \end{bmatrix} \qquad \rho \left( u^2 \right) = \begin{bmatrix} 1 & 0 \\ 0 & u^2 \\ \end{bmatrix}. </math> This representation is faithful because Ο is a [[injective|one-to-one map]]. Another representation for ''C''<sub>3</sub> on <math>\mathbb{C}^2</math>, isomorphic to the previous one, is Ο given by: :<math> \sigma \left( 1 \right) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix} \qquad \sigma \left( u \right) = \begin{bmatrix} u & 0 \\ 0 & 1 \\ \end{bmatrix} \qquad \sigma \left( u^2 \right) = \begin{bmatrix} u^2 & 0 \\ 0 & 1 \\ \end{bmatrix}. </math> The group ''C''<sub>3</sub> may also be faithfully represented on <math>\mathbb{R}^2</math> by Ο given by: :<math> \tau \left( 1 \right) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix} \qquad \tau \left( u \right) = \begin{bmatrix} a & -b \\ b & a \\ \end{bmatrix} \qquad \tau \left( u^2 \right) = \begin{bmatrix} a & b \\ -b & a \\ \end{bmatrix} </math> where :<math>a=\text{Re}(u)=-\tfrac{1}{2}, \qquad b=\text{Im}(u)=\tfrac{\sqrt{3}}{2}.</math> A possible representation on <math>\mathbb{R}^3</math> is given by the set of cyclic permutation matrices ''v'': :<math> \upsilon \left( 1 \right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} \qquad \upsilon \left( u \right) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ \end{bmatrix} \qquad \upsilon \left( u^2 \right) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ \end{bmatrix} .</math> Another example: Let <math>V</math> be the space of homogeneous degree-3 polynomials over the complex numbers in variables <math>x_1, x_2, x_3. </math> Then <math>S_3</math> acts on <math>V</math> by permutation of the three variables. For instance, <math>(12)</math> sends <math>x_{1}^3</math> to <math>x_{2}^3</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)