Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Haar wavelet
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Haar system on the unit interval and related systems == In this section, the discussion is restricted to the [[unit interval]] [0, 1] and to the Haar functions that are supported on [0, 1]. The system of functions considered by Haar in 1910,<ref>p. 361 in {{harvtxt|Haar|1910}}</ref> called the '''Haar system on [0, 1]''' in this article, consists of the subset of Haar wavelets defined as :<math>\{ t \in [0, 1] \mapsto \psi_{n,k}(t) \; : \; n, k \in \N \cup \{0\}, \; 0 \leq k < 2^n\},</math> with the addition of the constant function '''1''' on [0, 1]. In [[Hilbert space]] terms, this Haar system on [0, 1] is a complete orthonormal system, ''i.e.'', an [[orthonormal basis]], for the space ''L''<sup>2</sup>([0, 1]) of square integrable functions on the unit interval. The Haar system on [0, 1] —with the constant function '''1''' as first element, followed with the Haar functions ordered according to the [[Lexicographical order|lexicographic]] ordering of couples {{nowrap|(''n'', ''k'')}}— is further a [[Schauder basis#Properties|monotone]] [[Schauder basis]] for the space [[Lp space|''L''<sup>''p''</sup>([0, 1])]] when {{nowrap|1 ≤ ''p'' < ∞}}.<ref name="L. Tzafriri, 1977">see p. 3 in [[Joram Lindenstrauss|J. Lindenstrauss]], L. Tzafriri, (1977), "Classical Banach Spaces I, Sequence Spaces", Ergebnisse der Mathematik und ihrer Grenzgebiete '''92''', Berlin: Springer-Verlag, {{ISBN|3-540-08072-4}}.</ref> This basis is [[Schauder basis#Unconditionality|unconditional]] when {{nowrap|1 < ''p'' < ∞}}.<ref>The result is due to [[Raymond Paley|R. E. Paley]], ''A remarkable series of orthogonal functions (I)'', Proc. London Math. Soc. '''34''' (1931) pp. 241-264. See also p. 155 in J. Lindenstrauss, L. Tzafriri, (1979), "Classical Banach spaces II, Function spaces". Ergebnisse der Mathematik und ihrer Grenzgebiete '''97''', Berlin: Springer-Verlag, {{ISBN|3-540-08888-1}}.</ref> There is a related [[Rademacher system]] consisting of sums of Haar functions, :<math>r_n(t) = 2^{-n/2} \sum_{k=0}^{2^n - 1} \psi_{n, k}(t), \quad t \in [0, 1], \ n \ge 0.</math> Notice that |''r''<sub>''n''</sub>(''t'')| = 1 on [0, 1). This is an orthonormal system but it is not complete.<ref>{{SpringerEOM |title=Orthogonal system}}</ref><ref>{{cite book |first1=Gilbert G. |last1=Walter |first2=Xiaoping |last2=Shen |title=Wavelets and Other Orthogonal Systems |year=2001 |location=Boca Raton |publisher=Chapman |isbn=1-58488-227-1 }}</ref> In the language of [[probability theory]], the Rademacher sequence is an instance of a sequence of [[Independence (probability theory)|independent]] [[Bernoulli distribution|Bernoulli]] [[random variables]] with [[mean]] 0. The [[Khintchine inequality]] expresses the fact that in all the spaces ''L''<sup>''p''</sup>([0, 1]), {{nowrap|1 ≤ ''p'' < ∞}}, the Rademacher sequence is [[Schauder basis#Definitions|equivalent]] to the unit vector basis in ℓ<sup>''2''</sup>.<ref>see for example p. 66 in [[Joram Lindenstrauss|J. Lindenstrauss]], L. Tzafriri, (1977), "Classical Banach Spaces I, Sequence Spaces", Ergebnisse der Mathematik und ihrer Grenzgebiete '''92''', Berlin: Springer-Verlag, {{ISBN|3-540-08072-4}}.</ref> In particular, the [[Linear span#Closed linear span|closed linear span]] of the Rademacher sequence in ''L''<sup>''p''</sup>([0, 1]), {{nowrap|1 ≤ ''p'' < ∞}}, is [[Isomorphic normed spaces|isomorphic]] to ℓ<sup>''2''</sup>. === The Faber–Schauder system === The '''Faber–Schauder system'''<ref name="Faber">Faber, Georg (1910), "Über die Orthogonalfunktionen des Herrn Haar", ''Deutsche Math.-Ver'' (in German) '''19''': 104–112. {{issn|0012-0456}}; http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN37721857X ; http://resolver.sub.uni-goettingen.de/purl?GDZPPN002122553</ref><ref>Schauder, Juliusz (1928), "Eine Eigenschaft des Haarschen Orthogonalsystems", ''Mathematische Zeitschrift'' '''28''': 317–320.</ref><ref>{{eom|id=f/f038020 |title=Faber–Schauder system|first=B.I.|last= Golubov}}</ref> is the family of continuous functions on [0, 1] consisting of the constant function '''1''', and of multiples of [[Antiderivative|indefinite integrals]] of the functions in the Haar system on [0, 1], chosen to have norm 1 in the [[Uniform norm|maximum norm]]. This system begins with ''s''<sub>0</sub> = '''1''', then {{nowrap| ''s''<sub>1</sub>(''t'') {{=}} ''t''}} is the indefinite integral vanishing at 0 of the function '''1''', first element of the Haar system on [0, 1]. Next, for every integer {{nowrap|''n'' ≥ 0}}, functions {{nowrap| ''s''<sub>''n'',''k''</sub>}} are defined by the formula :<math> s_{n, k}(t) = 2^{1 + n/2} \int_0^t \psi_{n, k}(u) \, d u, \quad t \in [0, 1], \ 0 \le k < 2^n.</math> These functions {{nowrap| ''s''<sub>''n'',''k''</sub>}} are continuous, [[Piecewise linear function|piecewise linear]], supported by the interval {{nowrap| ''I''<sub>''n'',''k''</sub>}} that also supports {{nowrap| ψ<sub>''n'',''k''</sub>}}. The function {{nowrap| ''s''<sub>''n'',''k''</sub>}} is equal to 1 at the midpoint {{nowrap| ''x''<sub>''n'',''k''</sub>}} of the interval {{nowrap| ''I''<sub>''n'',''k''</sub>}}, linear on both halves of that interval. It takes values between 0 and 1 everywhere. The Faber–Schauder system is a [[Schauder basis]] for the space ''C''([0, 1]) of continuous functions on [0, 1].<ref name="L. Tzafriri, 1977"/> For every ''f'' in ''C''([0, 1]), the partial sum :<math> f_{n+1} = a_0 s_0 + a_1 s_1 + \sum_{m = 0}^{n-1} \Bigl( \sum_{k=0}^{2^m - 1} a_{m,k} s_{m, k} \Bigr) \in C([0, 1])</math> of the [[series expansion]] of ''f'' in the Faber–Schauder system is the continuous piecewise linear function that agrees with ''f'' at the {{nowrap|2<sup>''n''</sup> + 1}} points {{nowrap|''k''2<sup>−''n''</sup>}}, where {{nowrap| 0 ≤ ''k'' ≤ 2<sup>''n''</sup>}}. Next, the formula :<math> f_{n+2} - f_{n+1} = \sum_{k=0}^{2^n - 1} \bigl( f(x_{n,k}) - f_{n+1}(x_{n, k}) \bigr) s_{n, k} = \sum_{k=0}^{2^n - 1} a_{n, k} s_{n, k} </math> gives a way to compute the expansion of ''f'' step by step. Since ''f'' is [[Heine–Borel theorem|uniformly continuous]], the sequence {''f''<sub>''n''</sub>} converges uniformly to ''f''. It follows that the Faber–Schauder series expansion of ''f'' converges in ''C''([0, 1]), and the sum of this series is equal to ''f''. === The Franklin system === The '''Franklin system''' is obtained from the Faber–Schauder system by the [[Gram–Schmidt process|Gram–Schmidt orthonormalization procedure]].<ref>see Z. Ciesielski, ''Properties of the orthonormal Franklin system''. Studia Math. 23 1963 141–157.</ref><ref>Franklin system. B.I. Golubov (originator), Encyclopedia of Mathematics. URL: http://www.encyclopediaofmath.org/index.php?title=Franklin_system&oldid=16655</ref> Since the Franklin system has the same [[linear span]] as that of the Faber–Schauder system, this span is dense in ''C''([0, 1]), hence in ''L''<sup>2</sup>([0, 1]). The Franklin system is therefore an orthonormal basis for ''L''<sup>2</sup>([0, 1]), consisting of continuous piecewise linear functions. P. Franklin proved in 1928 that this system is a Schauder basis for ''C''([0, 1]).<ref>Philip Franklin, ''A set of continuous orthogonal functions'', Math. Ann. 100 (1928), 522-529. {{doi|10.1007/BF01448860}}</ref> The Franklin system is also an unconditional Schauder basis for the space ''L''<sup>''p''</sup>([0, 1]) when {{nowrap|1 < ''p'' < ∞}}.<ref name=Bo>S. V. Bočkarev, ''Existence of a basis in the space of functions analytic in the disc, and some properties of Franklin's system''. Mat. Sb. '''95''' (1974), 3–18 (Russian). Translated in Math. USSR-Sb. '''24''' (1974), 1–16.</ref> The Franklin system provides a Schauder basis in the [[disk algebra]] ''A''(''D'').<ref name=Bo /> This was proved in 1974 by Bočkarev, after the existence of a basis for the disk algebra had remained open for more than forty years.<ref>The question appears p. 238, §3 in Banach's book, {{citation|first=Stefan|last=Banach|author-link=Stefan Banach|url=http://matwbn.icm.edu.pl/kstresc.php?tom=1&wyd=10|title=Théorie des opérations linéaires|publication-place=Warszawa|publisher=Subwencji Funduszu Kultury Narodowej|year=1932|series=Monografie Matematyczne|volume=1|zbl=0005.20901}}. The disk algebra ''A''(''D'') appears as Example 10, p. 12 in Banach's book.</ref> Bočkarev's construction of a Schauder basis in ''A''(''D'') goes as follows: let ''f'' be a complex valued [[Lipschitz continuity|Lipschitz function]] on [0, π]; then ''f'' is the sum of a [[Fourier series|cosine series]] with [[Absolute convergence|absolutely summable]] coefficients. Let ''T''(''f'') be the element of ''A''(''D'') defined by the complex [[power series]] with the same coefficients, :<math> \left\{ f : x \in [0, \pi] \rightarrow \sum_{n=0}^\infty a_n \cos(n x) \right\} \longrightarrow \left\{ T(f) : z \rightarrow \sum_{n=0}^\infty a_n z^n, \quad |z| \le 1 \right\}.</math> Bočkarev's basis for ''A''(''D'') is formed by the images under ''T'' of the functions in the Franklin system on [0, π]. Bočkarev's equivalent description for the mapping ''T'' starts by extending ''f'' to an [[Even and odd functions|even]] Lipschitz function ''g''<sub>1</sub> on [−π, π], identified with a Lipschitz function on the [[unit circle]] '''T'''. Next, let ''g''<sub>2</sub> be the [[Hardy space conjugate function|conjugate function]] of ''g''<sub>1</sub>, and define ''T''(''f'') to be the function in ''A''(''D'') whose value on the boundary '''T''' of ''D'' is equal to {{nowrap|''g''<sub>1</sub> + i''g''<sub>2</sub>}}. When dealing with 1-periodic continuous functions, or rather with continuous functions ''f'' on [0, 1] such that {{nowrap|''f''(0) {{=}} ''f''(1)}}, one removes the function {{nowrap| ''s''<sub>1</sub>(''t'') {{=}} ''t''}} from the Faber–Schauder system, in order to obtain the '''periodic Faber–Schauder system'''. The '''periodic Franklin system''' is obtained by orthonormalization from the periodic Faber–-Schauder system.<ref name="Prz">See p. 161, III.D.20 and p. 192, III.E.17 in {{citation | last=Wojtaszczyk | first= Przemysław | title = Banach spaces for analysts | series = Cambridge Studies in Advanced Mathematics | volume = 25 | publisher = Cambridge University Press | location = Cambridge | year= 1991 | pages = xiv+382 | isbn = 0-521-35618-0 }}</ref> One can prove Bočkarev's result on ''A''(''D'') by proving that the periodic Franklin system on [0, 2π] is a basis for a Banach space ''A''<sub>''r''</sub> isomorphic to ''A''(''D'').<ref name="Prz" /> The space ''A''<sub>''r''</sub> consists of complex continuous functions on the unit circle '''T''' whose [[Harmonic conjugate|conjugate function]] is also continuous.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)