Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hahn–Banach theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===For complex or real vector spaces=== The dominated extension theorem for real linear functionals implies the following alternative statement of the Hahn–Banach theorem that can be applied to linear functionals on real or complex vector spaces. {{Math theorem | name = {{visible anchor|Hahn–Banach theorem for real or complex vector spaces|text=Hahn–Banach theorem}}{{sfn|Narici|Beckenstein|2011|pp=177-220}}<ref>{{harvnb|Rudin|1991}}, Th. 3.2</ref> | math_statement = Suppose <math>p : X \to \R</math> a [[seminorm]] on a vector space <math>X</math> over the field <math>\mathbf{K},</math> which is either <math>\R</math> or <math>\Complex.</math> If <math>f : M \to \mathbf{K}</math> is a linear functional on a vector subspace <math>M</math> such that <math display=block>|f(m)| \leq p(m) \quad \text{ for all } m \in M,</math> then there exists a linear functional <math>F : X \to \mathbf{K}</math> such that <math display=block>F(m) = f(m) \quad \; \text{ for all } m \in M,</math> <math display=block>|F(x)| \leq p(x) \quad \;\, \text{ for all } x \in X.</math> }} The theorem remains true if the requirements on <math>p</math> are relaxed to require only that for all <math>x, y \in X</math> and all scalars <math>a</math> and <math>b</math> satisfying <math>|a| + |b| \leq 1,</math>{{Sfn|Reed|Simon|1980|p=}} <math display=block>p(a x + b y) \leq |a| p(x) + |b| p(y).</math> This condition holds if and only if <math>p</math> is a [[Convex function|convex]] and [[balanced function]] satisfying <math>p(0) \leq 0,</math> or equivalently, if and only if it is convex, satisfies <math>p(0) \leq 0,</math> and <math>p(u x) \leq p(x)</math> for all <math>x \in X</math> and all [[unit length]] scalars <math>u.</math> A complex-valued functional <math>F</math> is said to be {{em|{{visible anchor|dominated complex functional|text=dominated by <math>p</math>}}}} if <math>|F(x)| \leq p(x)</math> for all <math>x</math> in the domain of <math>F.</math> With this terminology, the above statements of the Hahn–Banach theorem can be restated more succinctly: :'''Hahn–Banach dominated extension theorem''': If <math>p : X \to \R</math> is a [[seminorm]] defined on a real or complex vector space <math>X,</math> then every [[#dominated complex functional|dominated]] linear functional defined on a vector subspace of <math>X</math> has a dominated linear extension to all of <math>X.</math> In the case where <math>X</math> is a real vector space and <math>p : X \to \R</math> is merely a [[Convex function|convex]] or [[sublinear function]], this conclusion will remain true if both instances of "[[#dominated complex functional|dominated]]" (meaning <math>|F| \leq p</math>) are weakened to instead mean "[[#dominated real functional|dominated {{em|above}}]]" (meaning <math>F \leq p</math>).{{Sfn|Schechter|1996|pp=318-319}}{{Sfn|Reed|Simon|1980|p=}} '''Proof''' The following observations allow the [[#Hahn–Banach dominated extension theorem|Hahn–Banach theorem for real vector spaces]] to be applied to (complex-valued) linear functionals on complex vector spaces. Every linear functional <math>F : X \to \Complex</math> on a complex vector space is [[Linear form#Real and imaginary parts of a linear functional|completely determined]] by its [[real part]] <math>\; \operatorname{Re} F : X \to \R \;</math> through the formula{{sfn|Narici|Beckenstein|2011|pp=177-183}}<ref group=proof>If <math>z = a + i b \in \Complex</math> has real part <math>\operatorname{Re} z = a</math> then <math>- \operatorname{Re} (i z) = b,</math> which proves that <math>z = \operatorname{Re} z - i \operatorname{Re} (i z).</math> Substituting <math>F(x)</math> in for <math>z</math> and using <math>i F(x) = F(i x)</math> gives <math>F(x) = \operatorname{Re} F(x) - i \operatorname{Re} F(i x).</math> <math>\blacksquare</math></ref> <math display=block>F(x) \;=\; \operatorname{Re} F(x) - i \operatorname{Re} F(i x) \qquad \text{ for all } x \in X</math> and moreover, if <math>\|\cdot\|</math> is a [[Norm (mathematics)|norm]] on <math>X</math> then their [[dual norm]]s are equal: <math>\|F\| = \|\operatorname{Re} F\|.</math>{{sfn|Narici|Beckenstein|2011|pp=126-128}} In particular, a linear functional on <math>X</math> extends another one defined on <math>M \subseteq X</math> if and only if their real parts are equal on <math>M</math> (in other words, a linear functional <math>F</math> extends <math>f</math> if and only if <math>\operatorname{Re} F</math> extends <math>\operatorname{Re} f</math>). The real part of a linear functional on <math>X</math> is always a {{visible anchor|real-linear functional}} (meaning that it is linear when <math>X</math> is considered as a real vector space) and if <math>R : X \to \R</math> is a real-linear functional on a complex vector space then <math>x \mapsto R(x) - i R(i x)</math> defines the unique linear functional on <math>X</math> whose real part is <math>R.</math> If <math>F</math> is a linear functional on a (complex or real) vector space <math>X</math> and if <math>p : X \to \R</math> is a seminorm then{{sfn|Narici|Beckenstein|2011|pp=177-183}}<ref group=proof>Let <math>F</math> be any [[Homogeneous function#Homogeneity|homogeneous]] scalar-valued map on <math>X</math> (such as a linear functional) and let <math>p : X \to \R</math> be any map that satisfies <math>p(u x) = p(x)</math> for all <math>x</math> and [[unit length]] scalars <math>u</math> (such as a seminorm). If <math>|F| \leq p</math> then <math>\operatorname{Re} F \leq |\operatorname{Re} F| \leq |F| \leq p.</math> For the converse, assume <math>\operatorname{Re} F \leq p</math> and fix <math>x \in X.</math> Let <math>r = |F(x)|</math> and pick any <math>\theta \in \R</math> such that <math>F(x) = r e^{i \theta};</math> it remains to show <math>r \leq p(x).</math> Homogeneity of <math>F</math> implies <math>F\left(e^{-i \theta} x\right) = r</math> is real so that <math>\operatorname{Re} F\left(e^{-i \theta} x\right) = F\left(e^{-i \theta} x\right).</math> By assumption, <math>\operatorname{Re} F \leq p</math> and <math>p\left(e^{-i \theta} x\right) = p(x),</math> so that <math>r = \operatorname{Re} F\left(e^{-i \theta} x\right) \leq p\left(e^{-i \theta} x\right) = p(x),</math> as desired. <math>\blacksquare</math></ref> <math display=block>|F| \,\leq\, p \quad \text{ if and only if } \quad \operatorname{Re} F \,\leq\, p.</math> Stated in simpler language, a linear functional is [[#dominated complex functional|dominated]] by a seminorm <math>p</math> if and only if its [[#dominated real functional|real part is dominated above]] by <math>p.</math> {{Math proof|title=Proof of [[#Hahn–Banach theorem for real or complex vector spaces|Hahn–Banach for complex vector spaces]] by reduction to real vector spaces{{sfn|Narici|Beckenstein|2011|pp=177-220}}|drop=hidden|proof= Suppose <math>p : X \to \R</math> is a seminorm on a complex vector space <math>X</math> and let <math>f : M \to \Complex</math> be a linear functional defined on a vector subspace <math>M</math> of <math>X</math> that satisfies <math>|f| \leq p</math> on <math>M.</math> Consider <math>X</math> as a real vector space and apply the [[#Hahn–Banach dominated extension theorem|Hahn–Banach theorem for real vector spaces]] to the [[#real-linear functional|real-linear functional]] <math>\; \operatorname{Re} f : M \to \R \;</math> to obtain a real-linear extension <math>R : X \to \R</math> that is also dominated above by <math>p,</math> so that it satisfies <math>R \leq p</math> on <math>X</math> and <math>R = \operatorname{Re} f</math> on <math>M.</math> The map <math>F : X \to \Complex</math> defined by <math>F(x) \;=\; R(x) - i R(i x)</math> is a linear functional on <math>X</math> that extends <math>f</math> (because their real parts agree on <math>M</math>) and satisfies <math>|F| \leq p</math> on <math>X</math> (because <math>\operatorname{Re} F \leq p</math> and <math>p</math> is a seminorm). <math>\blacksquare</math> }} The proof above shows that when <math>p</math> is a seminorm then there is a one-to-one correspondence between dominated linear extensions of <math>f : M \to \Complex</math> and dominated real-linear extensions of <math>\operatorname{Re} f : M \to \R;</math> the proof even gives a formula for explicitly constructing a linear extension of <math>f</math> from any given real-linear extension of its real part. '''Continuity''' A linear functional <math>F</math> on a [[topological vector space]] is [[Continuous linear functional|continuous]] if and only if this is true of its real part <math>\operatorname{Re} F;</math> if the domain is a normed space then <math>\|F\| = \|\operatorname{Re} F\|</math> (where one side is infinite if and only if the other side is infinite).{{sfn|Narici|Beckenstein|2011|pp=126-128}} Assume <math>X</math> is a [[topological vector space]] and <math>p : X \to \R</math> is [[sublinear function]]. If <math>p</math> is a [[Continuity (topology)|continuous]] sublinear function that dominates a linear functional <math>F</math> then <math>F</math> is necessarily continuous.{{sfn|Narici|Beckenstein|2011|pp=177-183}} Moreover, a linear functional <math>F</math> is continuous if and only if its [[absolute value]] <math>|F|</math> (which is a [[seminorm]] that dominates <math>F</math>) is continuous.{{sfn|Narici|Beckenstein|2011|pp=177-183}} In particular, a linear functional is continuous if and only if it is dominated by some continuous sublinear function.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)