Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Harmonic number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Calculation== An integral representation given by [[Euler]]<ref>{{citation|title=How Euler Did It|series=MAA Spectrum|first=C. Edward|last=Sandifer|publisher=Mathematical Association of America|year=2007|isbn=9780883855638|page=206|url=https://books.google.com/books?id=sohHs7ExOsYC&pg=PA206}}.</ref> is <math display="block"> H_n = \int_0^1 \frac{1 - x^n}{1 - x}\,dx. </math> The equality above is straightforward by the simple [[algebraic identity]] <math display="block"> \frac{1-x^n}{1-x}=1+x+\cdots +x^{n-1}.</math> Using the substitution {{math|1=''x'' = 1 − ''u''}}, another expression for {{math|''H''<sub>''n''</sub>}} is <math display="block">\begin{align} H_n &= \int_0^1 \frac{1 - x^n}{1 - x}\,dx = \int_0^1\frac{1-(1-u)^n}{u}\,du \\[6pt] &= \int_0^1\left[\sum_{k=1}^n \binom nk (-u)^{k-1}\right]\,du = \sum_{k=1}^n \binom nk \int_0^1 (-u)^{k-1}\,du \\[6pt] &= \sum_{k=1}^n \binom nk \frac{(-1)^{k-1}}{k}. \end{align} </math> [[File:Integral Test.svg|thumb|Graph demonstrating a connection between harmonic numbers and the [[natural logarithm]]. The harmonic number {{math|''H''<sub>''n''</sub>}} can be interpreted as a [[Riemann sum]] of the integral: <math>\int_1^{n+1} \frac{dx}{x} = \ln(n+1).</math>]] The {{mvar|n}}th harmonic number is about as large as the [[natural logarithm]] of {{mvar|n}}. The reason is that the sum is approximated by the [[integral]] <math display="block">\int_1^n \frac{1}{x}\, dx,</math> whose value is {{math|ln ''n''}}. The values of the sequence {{math|''H''<sub>''n''</sub> − ln ''n''}} decrease monotonically towards the [[Limit of a sequence|limit]] <math display="block"> \lim_{n \to \infty} \left(H_n - \ln n\right) = \gamma,</math> where {{math|''γ'' ≈ 0.5772156649}} is the [[Euler–Mascheroni constant]]. The corresponding [[asymptotic expansion]] is <math display="block">\begin{align} H_n &\sim \ln{n}+\gamma+\frac{1}{2n}-\sum_{k=1}^\infty \frac{B_{2k}}{2k n^{2k}}\\ &=\ln{n}+\gamma+\frac{1}{2n}-\frac{1}{12n^2}+\frac{1}{120n^4}-\cdots, \end{align}</math> where {{math|''B''<sub>''k''</sub>}} are the [[Bernoulli numbers]]. {{Reflist|group=note}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)