Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Heegner number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Detail=== In what follows, j(z) denotes the [[j-invariant]] of the [[complex number]] z. Briefly, <math>\textstyle j\left(\frac{1+\sqrt{-d}}{2}\right)</math> is an integer for ''d'' a Heegner number, and <math display=block>e^{\pi \sqrt{d}} \approx -j\left(\frac{1+\sqrt{-d}}{2}\right) + 744</math> via the ''q''-expansion. If <math>\tau</math> is a quadratic irrational, then its ''j''-invariant <math>j(\tau)</math> is an [[algebraic integer]] of degree <math>\left|\mathrm{Cl}\bigl(\mathbf{Q}(\tau)\bigr)\right|</math>, the [[Class number (number theory)|class number]] of <math>\mathbf{Q}(\tau)</math> and the minimal (monic integral) polynomial it satisfies is called the 'Hilbert class polynomial'. Thus if the imaginary quadratic extension <math>\mathbf{Q}(\tau)</math> has class number 1 (so ''d'' is a Heegner number), the ''j''-invariant is an integer. The [[Q-expansion|''q''-expansion]] of ''j'', with its [[Fourier series]] expansion written as a [[Laurent series]] in terms of <math>q=e^{2 \pi i \tau}</math>, begins as: <math display=block>j(\tau) = \frac{1}{q} + 744 + 196\,884 q + \cdots.</math> The coefficients <math>c_n</math> asymptotically grow as <math display=block>\ln(c_n) \sim 4\pi \sqrt{n} + O\bigl(\ln(n)\bigr),</math> and the low order coefficients grow more slowly than <math>200\,000^n</math>, so for <math>\textstyle q \ll \frac{1}{200\,000}</math>, ''j'' is very well approximated by its first two terms. Setting <math>\textstyle\tau = \frac{1+\sqrt{-163}}{2}</math> yields <math display=block> q=-e^{-\pi \sqrt{163}} \quad\therefore\quad \frac{1}{q}=-e^{\pi \sqrt{163}}. </math> Now <math display=block>j\left(\frac{1+\sqrt{-163}}{2}\right)=\left(-640\,320\right)^3,</math> so, <math display=block>\left(-640\,320\right)^3=-e^{\pi \sqrt{163}}+744+O\left(e^{-\pi \sqrt{163}}\right).</math> Or, <math display=block>e^{\pi \sqrt{163}}=640\,320^3+744+O\left(e^{-\pi \sqrt{163}}\right)</math> where the linear term of the error is, <math display=block>\frac{-196\,884}{e^{\pi \sqrt{163}}} \approx \frac{-196\,884}{640\,320^3+744} \approx -0.000\,000\,000\,000\,75</math> explaining why <math>e^{\pi \sqrt{163}}</math> is within approximately the above of being an integer.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)