Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hilbert's third problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Further information== In light of Dehn's theorem above, one might ask "which polyhedra are scissors-congruent"? [[Jean-Pierre Sydler|Sydler]] (1965) showed that two polyhedra are scissors-congruent if and only if they have the same volume and the same Dehn invariant.<ref>{{cite journal |last=Sydler |first=J.-P. |title=Conditions nécessaires et suffisantes pour l'équivalence des polyèdres de l'espace euclidien à trois dimensions |journal=[[Commentarii Mathematici Helvetici|Comment. Math. Helv.]] |volume=40 |year=1965 |pages=43–80 |doi= 10.1007/bf02564364|s2cid=123317371 }}</ref> [[Børge Jessen]] later extended Sydler's results to four dimensions.<ref>{{cite journal | last = Jessen | first = Børge | journal = Nachrichten der Akademie der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, Fachgruppe II: Nachrichten aus der Physik, Astronomie, Geophysik, Technik | mr = 353150 | pages = 47–53 | title = Zur Algebra der Polytope | year = 1972 | zbl = 0262.52004}}</ref> In 1990, Dupont and Sah provided a simpler proof of Sydler's result by reinterpreting it as a theorem about the [[homology (mathematics)|homology]] of certain [[classical group]]s.<ref>{{cite journal |first1=Johan |last1=Dupont |first2=Chih-Han |last2=Sah |title=Homology of Euclidean groups of motions made discrete and Euclidean scissors congruences |journal=[[Acta Mathematica|Acta Math.]] |volume=164 |year=1990 |issue=1–2 |pages=1–27 |doi=10.1007/BF02392750 |doi-access=free }}</ref> Debrunner showed in 1980 that the Dehn invariant of any polyhedron with which all of [[three-dimensional space]] can be [[honeycomb (geometry)|tiled]] periodically is zero.<ref>{{cite journal |first=Hans E. |last=Debrunner |title=Über Zerlegungsgleichheit von Pflasterpolyedern mit Würfeln |journal=[[Archiv der Mathematik|Arch. Math.]] |volume=35 |year=1980 |issue=6 |pages=583–587 |doi=10.1007/BF01235384 |s2cid=121301319 }}</ref> {{unsolved|mathematics|In spherical or hyperbolic geometry, must polyhedra with the same volume and Dehn invariant be scissors-congruent?}} Jessen also posed the question of whether the analogue of Jessen's results remained true for [[spherical geometry]] and [[hyperbolic geometry]]. In these geometries, Dehn's method continues to work, and shows that when two polyhedra are scissors-congruent, their Dehn invariants are equal. However, it remains an [[open problem]] whether pairs of polyhedra with the same volume and the same Dehn invariant, in these geometries, are always scissors-congruent.<ref>{{citation |last = Dupont |first = Johan L. |doi = 10.1142/9789812810335 |isbn = 978-981-02-4507-8 |mr = 1832859 |page = 6 |publisher = World Scientific Publishing Co., Inc., River Edge, NJ |series = Nankai Tracts in Mathematics |title = Scissors congruences, group homology and characteristic classes |url = http://home.math.au.dk/dupont/scissors.ps |volume = 1 |year = 2001 |url-status = dead |archive-url = https://web.archive.org/web/20160429152252/http://home.math.au.dk/dupont/scissors.ps |archive-date = 2016-04-29 }}.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)