Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hodge star operator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == === Two dimensions === In two dimensions with the normalized Euclidean metric and orientation given by the ordering {{math|(''x'', ''y'')}}, the Hodge star on {{math|''k''}}-forms is given by <math display="block">\begin{align} {\star} \, 1 &= dx \wedge dy \\ {\star} \, dx &= dy \\ {\star} \, dy &= -dx \\ {\star} ( dx \wedge dy ) &= 1 . \end{align}</math> === Three dimensions === A common example of the Hodge star operator is the case {{math|1=''n'' = 3}}, when it can be taken as the correspondence between vectors and bivectors. Specifically, for [[Euclidean space|Euclidean]] '''R'''<sup>3</sup> with the basis <math>dx, dy, dz</math> of [[one-form]]s often used in [[vector calculus]], one finds that <math display="block">\begin{align} {\star} \,dx &= dy \wedge dz \\ {\star} \,dy &= dz \wedge dx \\ {\star} \,dz &= dx \wedge dy. \end{align}</math> The Hodge star relates the exterior and cross product in three dimensions:<ref name="Lounesto" /> <math display="block">{\star} (\mathbf{u} \wedge \mathbf{v}) = \mathbf{u} \times \mathbf{v} \qquad {\star} (\mathbf{u} \times \mathbf {v}) = \mathbf{u} \wedge \mathbf{v} .</math> Applied to three dimensions, the Hodge star provides an [[isomorphism]] between [[axial vector]]s and [[bivector]]s, so each axial vector {{math|'''a'''}} is associated with a bivector {{math|'''A'''}} and vice versa, that is:<ref name="Lounesto">{{cite book |title=Clifford Algebras and Spinors, ''Volume 286 of London Mathematical Society Lecture Note Series'' |author=Pertti Lounesto |chapter-url = https://books.google.com/books?id=E_xvJuA4M7QC&pg=PA39 |page=39 |chapter=§3.6 The Hodge dual |isbn=0-521-00551-5 |year=2001 |edition=2nd |publisher=Cambridge University Press}}</ref> <math>\mathbf{A} = {\star} \mathbf{a}, \ \ \mathbf{a} = {\star} \mathbf{A}</math>. The Hodge star can also be interpreted as a form of the geometric correspondence between an [[axis of rotation]] and an [[infinitesimal rotation]] (see also: [[3D rotation group#Lie algebra]]) around the axis, with speed equal to the length of the axis of rotation. A scalar product on a vector space <math>V</math> gives an [[Dual space#Bilinear products and dual spaces|isomorphism]] <math>V\cong V^*\!</math> identifying <math>V</math> with its [[dual space]], and the vector space <math>L(V,V)</math> is naturally isomorphic to the [[tensor product]] <math>V^*\!\!\otimes V\cong V\otimes V</math>. Thus for <math>V = \mathbb{R}^3</math>, the star mapping <math display="inline">\textstyle {\star} : V\to\bigwedge^{\!2}\! V \subset V\otimes V</math> takes each vector <math>\mathbf{v}</math> to a bivector <math>{\star} \mathbf{v} \in V\otimes V</math>, which corresponds to a linear operator <math>L_{\mathbf{v}} : V\to V</math>. Specifically, <math>L_{\mathbf{v}}</math> is a [[Skew-symmetric matrix|skew-symmetric]] operator, which corresponds to an infinitesimal rotation: that is, the macroscopic rotations around the axis <math>\mathbb{v}</math> are given by the [[matrix exponential]] <math>\exp(t L_{\mathbf{v}})</math>. With respect to the basis <math>dx, dy, dz</math> of <math>\R^3</math>, the tensor <math>dx\otimes dy</math> corresponds to a coordinate matrix with 1 in the <math>dx</math> row and <math>dy</math> column, etc., and the wedge <math>dx\wedge dy \,=\, dx\otimes dy - dy\otimes dx</math> is the skew-symmetric matrix <math>\scriptscriptstyle\left[\begin{array}{rrr} \,0\!\! & \!\!1 & \!\!\!\!0\!\!\!\!\!\! \\[-.5em] \,\!-1\!\!&\!\!0\!\!&\!\!\!\!0\!\!\!\!\!\! \\[-.5em] \,0\!\! & \!\!0\!\! & \!\!\!\!0\!\!\!\!\!\! \end{array}\!\!\!\right]</math>, etc. That is, we may interpret the star operator as: <math display="block"> \mathbf{v} = a\,dx + b\,dy + c\,dz \quad\longrightarrow \quad {\star}{\mathbf{v}} \ \cong\ L_{\mathbf{v}} \ = \left[\begin{array}{rrr} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{array}\right].</math> Under this correspondence, cross product of vectors corresponds to the commutator [[Lie algebra|Lie bracket]] of linear operators: <math>L_{\mathbf{u}\times\mathbf{v}} = L_{\mathbf{v}} L_{\mathbf{u}} - L_{\mathbf{u}} L_{\mathbf{v}}=-\left[L_{\mathbf{u}}, L_{\mathbf{v}}\right]</math>. <!-- These dual relations can be implemented using multiplication by the [[Pseudoscalar (Clifford algebra)#Unit pseudoscalar|unit pseudoscalar]] in [[Clifford algebra#Examples: real and complex Clifford algebras|Cl<sub>3</sub>('''R''')]],<ref name=Datta>{{cite book |title=Geometric algebra and applications to physics |chapter=The pseudoscalar and imaginary unit | url=https://books.google.com/books?id=AXTQXnws8E8C&pg=PA53 |page=53 ''ff'' |author=Venzo De Sabbata, Bidyut Kumar Datta |isbn=1-58488-772-9 | publisher=CRC Press |year=2007}}</ref> {{math|1=''i'' = '''e'''<sub>1</sub>'''e'''<sub>2</sub>'''e'''<sub>3</sub>}} (the vectors {{math|{'''e'''<sub>ℓ</sub>} }} are an orthonormal basis in three-dimensional Euclidean space) according to the relations<ref name=Baylis>{{cite book |title=Lectures on Clifford (geometric) algebras and applications |editor=Rafal Ablamowicz, Garret Sobczyk |page=100 ''ff'' |chapter=Chapter 4: Applications of Clifford algebras in physics |author=William E Baylis |isbn=0-8176-3257-3 |year=2004 | publisher=Birkhäuser | url=https://books.google.com/books?id=oaoLbMS3ErwC&pg=PA100}}</ref> <math display="block">\mathbf{A} = \mathbf{a}i\,\quad\mathbf{a} = - \mathbf{A} i. </math> The dual of a vector is obtained by multiplication by {{mvar|i}}, as established using the properties of the [[Geometric product#The geometric product|geometric product]] of the algebra as follows: <math display="block">\begin{align} \mathbf{a}i &= \left(a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 + a_3 \mathbf{e}_3\right) \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_3 \\ &= a_1 \mathbf{e}_2 \mathbf{e}_3 (\mathbf{e}_1)^2 + a_2 \mathbf{e}_3 \mathbf{e}_1(\mathbf{e}_2)^2 + a_3 \mathbf{e}_1 \mathbf{e}_2(\mathbf{e}_3)^2 \\ &= a_1 \mathbf{e}_2 \mathbf{e}_3 + a_2 \mathbf{e}_3 \mathbf{e}_1 + a_3 \mathbf{e}_1 \mathbf{e}_2 \\ &= ({\star} \mathbf{a}) \end{align}</math> and also, in the dual space spanned by {{math|{'''e'''<sub>ℓ</sub>'''e'''<sub>''m''</sub>}<nowiki/>}}: <math display="block">\begin{align} \mathbf{A} i &= \left(A_1 \mathbf{e}_2\mathbf{e}_3 + A_2 \mathbf{e}_3\mathbf{e}_1 + A_3 \mathbf{e}_1\mathbf{e}_2\right) \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_3 \\ &= A_1 \mathbf{e}_1 (\mathbf{e}_2 \mathbf{e}_3)^2 + A_2 \mathbf{e}_2 (\mathbf{e}_3 \mathbf{e}_1)^2 + A_3 \mathbf{e}_3(\mathbf{e}_1 \mathbf{e}_2)^2 \\ &= -\left( A_1 \mathbf{e}_1 + A_2 \mathbf{e}_2 + A_3 \mathbf{e}_3 \right) \\ &= -({\star} \mathbf{A}) \end{align}</math> In establishing these results, the identities are used: <math display="block">(\mathbf{e}_1\mathbf{e}_2)^2 = \mathbf{e}_1\mathbf{e}_2\mathbf{e}_1\mathbf{e}_2= -\mathbf{e}_1\mathbf{e}_2\mathbf{e}_2\mathbf{e}_1 = -1</math> and: <math display="block">\mathit{i}^2 = (\mathbf{e}_1\mathbf{e}_2\mathbf{e}_3)^2 = \mathbf{e}_1\mathbf{e}_2\mathbf{e}_3\mathbf{e}_1\mathbf{e}_2\mathbf{e}_3 = \mathbf{e}_1\mathbf{e}_2\mathbf{e}_3\mathbf{e}_3\mathbf{e}_1\mathbf{e}_2 = \mathbf{e}_1\mathbf{e}_2\mathbf{e}_1\mathbf{e}_2 = -1.</math> These relations between the dual <math>{\star}</math> and {{mvar|i}} apply to any vectors. Here they are applied to relate the axial vector created as the [[cross product]] {{math|1='''a''' = '''u''' × '''v'''}} to the bivector-valued [[exterior product]] {{math|1='''A''' = '''u''' ∧ '''v'''}} of two [[polar vectors|polar]] (that is, not axial) vectors {{math|'''u'''}} and {{math|'''v'''}}; the two products can be written as [[determinant]]s expressed in the same way: <math display="block">\mathbf a = \mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3\\u_1 & u_2 & u_3\\v_1 & v_2 & v_3 \end{vmatrix}\,,\quad\mathbf A = \mathbf{u} \wedge \mathbf{v} = \begin{vmatrix} \mathbf{e}_{2}\mathbf{e}_{3} & \mathbf{e}_{3}\mathbf{e}_{1} & \mathbf{e}_{1}\mathbf{e}_{2} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}.</math> These expressions show these two types of vector are Hodge duals:<ref name=Lounesto/> <math display="block">{\star} (\mathbf{u} \wedge \mathbf{v}) = \mathbf{u \times v}\,,\quad{\star} (\mathbf{u} \times \mathbf {v}) = \mathbf{u} \wedge \mathbf{v},</math> as a result of the relations: <math display="block">{\star} \mathbf{e}_\ell = \mathbf{e}_\ell \mathit{i} = \mathbf{e}_\ell \mathbf{e}_1\mathbf{e}_2\mathbf{e}_3 = \mathbf{e}_m \mathbf{e}_n \,, </math> with {{math|''ℓ'', ''m'', ''n''}} cyclic, and: <math display="block">{\star} ( \mathbf{e}_\ell \mathbf{e}_m ) = -( \mathbf{e}_\ell \mathbf{e}_m ) \mathit{i} = -\left( \mathbf{e}_\ell \mathbf{e}_m \right)\mathbf{e}_1\mathbf{e}_2\mathbf{e}_3 = \mathbf{e}_n </math> also with {{math|''ℓ'', ''m'', ''n''}} cyclic. Using the implementation of <math>{\star}</math> based upon {{mvar|i}}, the commonly used relations are:<ref name=Hestenes>{{cite book |title=New foundations for classical mechanics: Fundamental Theories of Physics |isbn=0-7923-5302-1 |edition=2nd |year=1999 |publisher=Springer |chapter=The vector cross product |author-link = David Hestenes|author=David Hestenes |url=https://books.google.com/books?id=AlvTCEzSI5wC&pg=PA60 |page=60 }}</ref> <math display="block"> \mathbf{u \times v} = -(\mathbf{u} \wedge \mathbf{v}) i \,,\quad \mathbf{u} \wedge \mathbf{v} = (\mathbf{u \times v} ) i \ . </math> --> === Four dimensions === In case <math>n=4</math>, the Hodge star acts as an [[endomorphism]] of the second exterior power (i.e. it maps 2-forms to 2-forms, since {{math|1=4 − 2 = 2}}). If the signature of the [[metric tensor]] is all positive, i.e. on a [[Riemannian manifold]], then the Hodge star is an [[involution (mathematics)|involution]]. If the signature is mixed, i.e., [[Pseudo-Riemannian_manifold|pseudo-Riemannian]], then applying the operator twice will return the argument up to a sign – see ''{{section link|#Duality}}'' below. This particular endomorphism property of 2-forms in four dimensions makes [[Yang–Mills equations#Anti-self-duality equations|self-dual and anti-self-dual two-forms]] natural geometric objects to study. That is, one can describe the space of 2-forms in four dimensions with a basis that "diagonalizes" the Hodge star operator with eigenvalues <math>\pm 1</math> (or <math>\pm i</math>, depending on the signature). For concreteness, we discuss the Hodge star operator in Minkowski spacetime where <math>n=4</math> with metric signature {{math|(− + + +)}} and coordinates <math>(t,x,y,z)</math>. The [[volume form]] is oriented as <math>\varepsilon_{0123} = 1</math>. For [[one-form]]s, <math display="block">\begin{align} {\star} dt &= -dx \wedge dy \wedge dz \,, \\ {\star} dx &= -dt \wedge dy \wedge dz \,, \\ {\star} dy &= -dt \wedge dz \wedge dx \,, \\ {\star} dz &= -dt \wedge dx \wedge dy \,, \end{align}</math> while for [[2-form]]s, <math display="block">\begin{align} {\star} (dt \wedge dx) &= - dy \wedge dz \,, \\ {\star} (dt \wedge dy) &= - dz \wedge dx \,, \\ {\star} (dt \wedge dz) &= - dx \wedge dy \,, \\ {\star} (dx \wedge dy) &= dt \wedge dz \,, \\ {\star} (dz \wedge dx) &= dt \wedge dy \,, \\ {\star} (dy \wedge dz) &= dt \wedge dx \,. \end{align}</math> These are summarized in the index notation as <math display="block">\begin{align} {\star} (dx^\mu) &= \eta^{\mu\lambda} \varepsilon_{\lambda\nu\rho\sigma} \frac{1}{3!} dx^\nu \wedge dx^\rho \wedge dx^\sigma \,,\\ {\star} (dx^\mu \wedge dx^\nu) &= \eta^{\mu\kappa} \eta^{\nu\lambda} \varepsilon_{\kappa\lambda\rho\sigma} \frac{1}{2!} dx^\rho \wedge dx^\sigma \,. \end{align}</math> Hodge dual of three- and four-forms can be easily deduced from the fact that, in the Lorentzian signature, <math>{\star}^2=1</math> for odd-rank forms and <math>{\star}^2=-1</math> for even-rank forms. An easy rule to remember for these Hodge operations is that given a form <math>\alpha</math>, its Hodge dual <math>{\star}\alpha</math> may be obtained by writing the components not involved in <math>\alpha</math> in an order such that <math>\alpha \wedge ({\star} \alpha) = dt \wedge dx \wedge dy \wedge dz </math>.{{verify source|date=September 2019}} An extra minus sign will enter only if <math>\alpha</math> contains <math>dt</math>. (For {{math|(+ − − −)}}, one puts in a minus sign only if <math>\alpha</math> involves an odd number of the space-associated forms <math>dx</math>, <math>dy</math> and <math>dz</math>.) Note that the combinations <math display="block"> (dx^\mu \wedge dx^\nu)^{\pm} := \frac{1}{2} \big( dx^\mu \wedge dx^\nu \mp i {\star} (dx^\mu \wedge dx^\nu) \big)</math> take <math>\pm i</math> as the eigenvalue for Hodge star operator, i.e., <math display="block"> {\star} (dx^\mu \wedge dx^\nu)^{\pm} = \pm i (dx^\mu \wedge dx^\nu)^{\pm} , </math> and hence deserve the name self-dual and anti-self-dual two-forms. Understanding the geometry, or kinematics, of Minkowski spacetime in self-dual and anti-self-dual sectors turns out to be insightful in both [[Low-dimensional topology#Four dimensions|mathematical]] and [[Chirality (physics)#Chirality and helicity|physical]] perspectives, making contacts to the use of the [[Weyl equation#Weyl spinors|two-spinor]] language in modern physics such as [[spinor-helicity formalism]] or [[twistor theory]]. === Conformal invariance === The Hodge star is conformally invariant on {{math|''n''}}-forms on a {{math|2''n''}}-dimensional vector space <math> V </math>, i.e. if <math> g </math> is a metric on <math> V </math> and <math> \lambda > 0 </math>, then the induced Hodge stars <math display="block"> {\star}_g, {\star}_{\lambda g} : \Lambda^n V \to \Lambda^n V</math> are the same. === Example: Derivatives in three dimensions=== The combination of the <math>{\star}</math> operator and the [[exterior derivative]] {{math|''d''}} generates the classical operators {{math|[[gradient|grad]]}}, {{math|[[Curl (mathematics)|curl]]}}, and {{math|[[divergence|div]]}} on [[vector field]]s in three-dimensional Euclidean space. This works out as follows: {{math|''d''}} takes a 0-form (a function) to a 1-form, a 1-form to a 2-form, and a 2-form to a 3-form (and takes a 3-form to zero). For a 0-form <math>f = f(x,y,z)</math>, the first case written out in components gives: <math display="block">df = \frac{\partial f}{\partial x} \, dx + \frac{\partial f}{\partial y} \, dy + \frac{\partial f}{\partial z} \, dz.</math> The scalar product [[Dual space#Bilinear products and dual spaces|identifies]] 1-forms with vector fields as <math>dx \mapsto (1,0,0)</math>, etc., so that <math>df</math> becomes <math display="inline">\operatorname{grad} f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)</math>. In the second case, a vector field <math>\mathbf F = (A,B,C)</math> corresponds to the 1-form <math>\varphi = A\,dx + B\,dy + C\,dz</math>, which has exterior derivative: <math display="block">d\varphi = \left(\frac{\partial C}{\partial y} - \frac{\partial B}{\partial z}\right) dy\wedge dz + \left(\frac{\partial C}{\partial x} - \frac{\partial A}{\partial z}\right) dx\wedge dz + \left({\partial B \over \partial x} - \frac{\partial A}{\partial y}\right) dx\wedge dy.</math> Applying the Hodge star gives the 1-form: <math display="block">{\star} d\varphi = \left({\partial C \over \partial y} - {\partial B \over \partial z} \right) \, dx - \left({\partial C \over \partial x} - {\partial A \over \partial z} \right) \, dy + \left({\partial B \over \partial x} - {\partial A \over \partial y}\right) \, dz,</math> which becomes the vector field <math display="inline">\operatorname{curl}\mathbf{F} = \left( \frac{\partial C}{\partial y} - \frac{\partial B}{\partial z},\, -\frac{\partial C}{\partial x} + \frac{\partial A}{\partial z},\, \frac{\partial B}{\partial x} - \frac{\partial A}{\partial y} \right)</math>. In the third case, <math>\mathbf F = (A,B,C)</math> again corresponds to <math>\varphi = A\,dx + B\,dy + C\,dz</math>. Applying Hodge star, exterior derivative, and Hodge star again: <math display="block">\begin{align} {\star}\varphi &= A\,dy\wedge dz-B\,dx\wedge dz+C\,dx\wedge dy, \\ d{\star\varphi} &= \left(\frac{\partial A}{\partial x}+\frac{\partial B}{\partial y}+\frac{\partial C}{\partial z}\right)dx\wedge dy\wedge dz, \\ {\star} d{\star}\varphi &= \frac{\partial A}{\partial x}+\frac{\partial B}{\partial y}+\frac{\partial C}{\partial z} = \operatorname{div}\mathbf{F}. \end{align}</math> One advantage of this expression is that the identity {{math|1=''d''{{i sup|2}} = 0}}, which is true in all cases, has as special cases two other identities: (1) {{math|1=curl grad ''f'' = 0}}, and (2) {{math|1=div curl '''F''' = 0}}. In particular, [[Maxwell's equations#Relativistic formulations|Maxwell's equations]] take on a particularly simple and elegant form, when expressed in terms of the exterior derivative and the Hodge star. The expression <math>{\star}d{\star}</math> (multiplied by an appropriate power of −1) is called the ''codifferential''; it is defined in full generality, for any dimension, further in the article below. One can also obtain the [[Laplacian]] {{math|1=Δ''f'' = div grad ''f''}} in terms of the above operations: <math display="block"> \Delta f = {\star}d{\star}d f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}.</math> The Laplacian can also be seen as a special case of the more general [[Laplace–Beltrami operator|Laplace–deRham operator]] <math>\Delta = d\delta + \delta d</math> where in three dimensions, <math>\delta = (-1)^k {\star} d{\star}</math> is the codifferential for <math>k</math>-forms. Any function <math>f</math> is a 0-form, and <math>\delta f = 0</math> and so this reduces to the ordinary Laplacian. For the 1-form <math>\varphi</math> above, the codifferential is <math>\delta = - {\star} d{\star}</math> and after some straightforward calculations one obtains the Laplacian acting on <math>\varphi</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)