Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Homotopy
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == * If <math>f, g: \R \to \R^2</math> are given by <math>f(x) := \left(x, x^3\right)</math> and <math>g(x) = \left(x, e^x\right)</math>, then the map <math>H: \mathbb{R} \times [0, 1] \to \mathbb{R}^2</math> given by <math>H(x, t) = \left(x, (1 - t)x^3 + te^x\right)</math> is a homotopy between them. * More generally, if <math>C \subseteq \mathbb{R}^n</math> is a [[convex set|convex]] subset of [[Euclidean space]] and <math>f, g: [0, 1] \to C</math> are [[path (topology)|paths]] with the same endpoints, then there is a '''linear homotopy'''<ref>{{Cite book|title=Algebraic topology|last=Allen.|first=Hatcher|date=2002|publisher=Cambridge University Press|isbn=9780521795401|location=Cambridge|pages=185|oclc=45420394}}</ref> (or '''straight-line homotopy''') given by *: <math>\begin{align} H: [0, 1] \times [0, 1] &\longrightarrow C \\ (s, t) &\longmapsto (1 - t)f(s) + tg(s). \end{align}</math> * Let <math>\operatorname{id}_{B^n}:B^n\to B^n</math> be the [[identity function]] on the unit ''n''-[[ball (mathematics)|disk]]; i.e. the set <math>B^n := \left\{x\in\mathbb{R}^n: \|x\| \leq 1\right\}</math>. Let <math>c_{\vec{0}}: B^n \to B^n</math> be the [[constant function]] <math>c_\vec{0}(x) := \vec{0}</math> which sends every point to the [[Origin (mathematics)|origin]]. Then the following is a homotopy between them: *: <math>\begin{align} H: B^n \times [0, 1] &\longrightarrow B^n \\ (x, t) &\longmapsto (1 - t)x. \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)