Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hypothalamic–pituitary–adrenal axis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Immune system== There is bi-directional communication and feedback between the HPA axis and the [[immune system]]. A number of [[cytokines]], such as [[Interleukin 1-alpha|IL-1]], [[Interleukin-6 receptor|IL-6]], [[IL-10 family|IL-10]] and [[Tumor necrosis factor|TNF-alpha]] can activate the HPA axis, although IL-1 is the most potent. The HPA axis in turn modulates the immune response, with high levels of cortisol resulting in a suppression of immune and inflammatory reactions. This helps to protect the organism from a lethal overactivation of the immune system, and minimizes tissue damage from inflammation.<ref name="isbn_9780444530400"/> In many ways, the [[Central nervous system|CNS]] is "[[immune privilege]]d", but it plays an important role in the immune system and is affected by it in turn. The CNS regulates the immune system through [[neuroendocrine]] pathways, such as the HPA axis. The HPA axis is responsible for modulating [[Inflammation|inflammatory responses]] that occur throughout the body.<ref name="MD">{{cite journal|last1=Marques-Deak|first1=A|last2=Cizza|first2=G|last3=Sternberg|first3=E|title=Brain-immune interactions and disease susceptibility|journal=Molecular Psychiatry|date=February 2005|volume=10|issue=3|pages=239–250|doi=10.1038/sj.mp.4001643|pmid=15685252|s2cid=17978810|doi-access=}}</ref><ref name="Otmishi">{{cite journal|last1=Otmishi|first1=Peyman|last2=Gordon|first2=Josiah|last3=El-Oshar|first3=Seraj|last4=Li|first4=Huafeng|last5=Guardiola|first5=Juan|last6=Saad|first6=Mohamed|last7=Proctor|first7=Mary|last8=Yu|first8=Jerry|title=Neuroimmune Interaction in Inflammatory Diseases|journal=Clinical Medicine: Circulatory, Respiratory, and Pulmonary Medicine|date=2008|volume=2|pages=35–44|pmc=2990232|pmid=21157520|doi=10.4137/ccrpm.s547}}</ref> During an immune response, [[proinflammatory cytokines]] (e.g. IL-1) are released into the peripheral circulation system and can pass through the [[blood–brain barrier]] where they can interact with the brain and activate the HPA axis.<ref name="Otmishi"/><ref name="Tian">{{cite journal|last1=Tian|first1=Rui|last2=Hou|first2=Gonglin|last3=Li|first3=Dan|last4=Yuan|first4=Ti-Fei|title=A Possible Change Process of Inflammatory Cytokines in the prolonged Chronic Stress and its Ultimate Implications for Health|journal=The Scientific World Journal|date=June 2014|volume=2014|pages=780616|pmc=4065693|doi=10.1155/2014/780616|pmid=24995360|doi-access=free}}</ref><ref name="Hall">{{cite journal|last1=Hall|first1=Jessica|last2=Cruser|first2=desAgnes|last3=Podawiltz|first3=Alan|last4=Mummert|first4=Diana|last5=Jones|first5=Harlan|last6=Mummert|first6=Mark|title=Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis|journal=Dermatology Research and Practice|date=August 2012|volume=2012|pages=403908|doi=10.1155/2012/403908|pmid=22969795|pmc=3437281|doi-access=free}}</ref> Interactions between the [[proinflammatory cytokines]] and the brain can alter the [[metabolic activity]] of [[neurotransmitters]] and cause symptoms such as fatigue, [[Depression (mood)|depression]], and mood changes.<ref name="Otmishi"/><ref name="Tian"/> Deficiencies in the HPA axis may play a role in allergies and inflammatory/ autoimmune diseases, such as [[rheumatoid arthritis]] and [[multiple sclerosis]].<ref name="MD"/><ref name="Otmishi"/><ref name="Bellavance">{{cite journal|last1=Bellavance|first1=Marc-Andre|last2=Rivest|first2=Serge|title=The HPA-immune axis and the immunomodulatory actions of glucocorticoids in the brain|journal=Frontiers in Immunology|date=March 2014|volume=5|pages=136|doi=10.3389/fimmu.2014.00136|pmid=24744759|pmc=3978367|doi-access=free}}</ref> When the HPA axis is activated by [[stressors]], such as an [[immune response]], high levels of [[glucocorticoids]] are released into the body and suppress immune response by inhibiting the expression of proinflammatory cytokines (e.g. [[Interleukin 1|IL-1]], [[TNF alpha]], and [[IFN gamma]]) and increasing the levels of anti-inflammatory cytokines (e.g. [[Interleukin 4|IL-4]], [[Interleukin 10|IL-10]], and [[Interleukin 13|IL-13]]) in immune cells, such as [[monocytes]] and [[neutrophils]].<ref name="Otmishi"/><ref name="Tian"/><ref name="Bellavance"/><ref name="Padgett">{{cite journal|last1=Padgett|first1=David|last2=Glaser|first2=Ronald|title=How stress influences the immune response|journal=Trends in Immunology|date=August 2003|volume=24|issue=8|pages=444–448|doi=10.1016/S1471-4906(03)00173-X|url=http://www.direct-ms.org/pdf/ImmunologyGeneral/Stress%20and%20immunity.pdf|access-date=12 February 2016|pmid=12909458|archive-url=https://web.archive.org/web/20160327154337/http://www.direct-ms.org/pdf/ImmunologyGeneral/Stress%20and%20immunity.pdf|archive-date=2016-03-27|url-status=dead}}</ref> The relationship between chronic stress and its concomitant activation of the HPA axis, and dysfunction of the immune system is unclear; studies have found both [[immunosuppression]] and hyperactivation of the immune response.<ref name="Padgett"/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)