Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Infinitesimal strain theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Physical interpretation=== From [[Finite deformation tensor|finite strain theory]] we have <math display="block">d\mathbf{x}^2 - d\mathbf{X}^2 = d\mathbf X \cdot 2\mathbf E \cdot d\mathbf X \quad\text{or}\quad (dx)^2 - (dX)^2 = 2E_{KL}\,dX_K\,dX_L</math> For infinitesimal strains then we have <math display="block">d\mathbf{x}^2 - d\mathbf{X}^2 = d\mathbf X \cdot 2\mathbf{\boldsymbol \varepsilon} \cdot d\mathbf X \quad\text{or}\quad (dx)^2 - (dX)^2 = 2\varepsilon_{KL}\,dX_K\,dX_L</math> Dividing by <math>(dX)^2</math> we have <math display="block">\frac{dx-dX}{dX}\frac{dx+dX}{dX}=2\varepsilon_{ij}\frac{dX_i}{dX}\frac{dX_j}{dX}</math> For small deformations we assume that <math>dx \approx dX</math>, thus the second term of the left hand side becomes: <math>\frac{dx+dX}{dX} \approx 2</math>. Then we have <math display="block">\frac{dx-dX}{dX} = \varepsilon_{ij}N_iN_j = \mathbf N \cdot \boldsymbol \varepsilon \cdot \mathbf N</math> where <math>N_i=\frac{dX_i}{dX}</math>, is the unit vector in the direction of <math>d\mathbf X</math>, and the left-hand-side expression is the [[Deformation (mechanics)#Strain measures|normal strain]] <math>e_{(\mathbf N)}</math> in the direction of <math>\mathbf N</math>. For the particular case of <math>\mathbf N</math> in the <math>X_1</math> direction, i.e., <math>\mathbf N = \mathbf I_1</math>, we have <math display="block">e_{(\mathbf I_1)}=\mathbf I_1 \cdot \boldsymbol \varepsilon \cdot \mathbf I_1 = \varepsilon_{11}.</math> Similarly, for <math>\mathbf N=\mathbf I_2</math> and <math>\mathbf N=\mathbf I_3</math> we can find the normal strains <math>\varepsilon_{22}</math> and <math>\varepsilon_{33}</math>, respectively. Therefore, the diagonal elements of the infinitesimal strain tensor are the normal strains in the coordinate directions.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)