Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Infinitesimal transformation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Operator version of Taylor's theorem== The operator equation :<math>e^{tD}f(x)=f(x+t)\,</math> where :<math>D={d\over dx}</math> is an [[Operator (mathematics)|operator]] version of [[Taylor's theorem]] — and is therefore only valid under ''caveats'' about ''f'' being an [[analytic function]]. Concentrating on the operator part, it shows that ''D'' is an infinitesimal transformation, generating translations of the real line via the [[exponential function|exponential]]. In Lie's theory, this is generalised a long way. Any [[connected space|connected]] Lie group can be built up by means of its [[Lie group#The Lie algebra associated with a Lie group|infinitesimal generator]]s (a basis for the Lie algebra of the group); with explicit if not always useful information given in the [[Baker–Campbell–Hausdorff formula]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)