Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Initial topology
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== ===Characteristic property=== The initial topology on <math>X</math> can be characterized by the following characteristic property:<br> A function <math>g</math> from some space <math>Z</math> to <math>X</math> is continuous if and only if <math>f_i \circ g</math> is continuous for each <math>i \in I.</math>{{sfn|Grothendieck|1973|p=2}} [[Image:InitialTopology-01.png|center|Characteristic property of the initial topology]] Note that, despite looking quite similar, this is not a [[universal property]]. A categorical description is given below. A [[Filter (set theory)|filter]] <math>\mathcal{B}</math> on <math>X</math> [[Convergent filter|converges to]] a point <math>x \in X</math> if and only if the [[prefilter]] <math>f_i(\mathcal{B})</math> [[Convergent prefilter|converges to]] <math>f_i(x)</math> for every <math>i \in I.</math>{{sfn|Grothendieck|1973|p=2}} ===Evaluation=== By the universal property of the [[product topology]], we know that any family of continuous maps <math>f_i : X \to Y_i</math> determines a unique continuous map <math display=block>\begin{alignat}{4} f :\;&& X &&\;\to \;& \prod_i Y_i \\[0.3ex] && x &&\;\mapsto\;& \left(f_i(x)\right)_{i \in I} \\ \end{alignat}</math> This map is known as the '''{{visible anchor|evaluation map}}'''.{{cn|reason=Such a counterintuitive term must be reliably sourced|date=February 2024}} A family of maps <math>\{f_i : X \to Y_i\}</math> is said to ''[[Separating set|{{visible anchor|separate points}}]]'' in <math>X</math> if for all <math>x \neq y</math> in <math>X</math> there exists some <math>i</math> such that <math>f_i(x) \neq f_i(y).</math> The family <math>\{f_i\}</math> separates points if and only if the associated evaluation map <math>f</math> is [[injective]]. The evaluation map <math>f</math> will be a [[topological embedding]] if and only if <math>X</math> has the initial topology determined by the maps <math>\{f_i\}</math> and this family of maps separates points in <math>X.</math> ===Hausdorffness=== If <math>X</math> has the initial topology induced by <math>\left\{f_i : X \to Y_i\right\}</math> and if every <math>Y_i</math> is Hausdorff, then <math>X</math> is a [[Hausdorff space]] if and only if these maps [[#separate points|separate points]] on <math>X.</math>{{sfn|Grothendieck|1973|p=1}} ===Transitivity of the initial topology=== If <math>X</math> has the initial topology induced by the <math>I</math>-indexed family of mappings <math>\left\{f_i : X \to Y_i\right\}</math> and if for every <math>i \in I,</math> the topology on <math>Y_i</math> is the initial topology induced by some <math>J_i</math>-indexed family of mappings <math>\left\{g_j : Y_i \to Z_j\right\}</math> (as <math>j</math> ranges over <math>J_i</math>), then the initial topology on <math>X</math> induced by <math>\left\{f_i : X \to Y_i\right\}</math> is equal to the initial topology induced by the <math>{\textstyle \bigcup\limits_{i \in I} J_i}</math>-indexed family of mappings <math>\left\{g_j \circ f_i : X \to Z_j\right\}</math> as <math>i</math> ranges over <math>I</math> and <math>j</math> ranges over <math>J_i.</math>{{sfn|Grothendieck|1973|pp=1-2}} Several important corollaries of this fact are now given. In particular, if <math>S \subseteq X</math> then the subspace topology that <math>S</math> inherits from <math>X</math> is equal to the initial topology induced by the [[inclusion map]] <math>S \to X</math> (defined by <math>s \mapsto s</math>). Consequently, if <math>X</math> has the initial topology induced by <math>\left\{f_i : X \to Y_i\right\}</math> then the subspace topology that <math>S</math> inherits from <math>X</math> is equal to the initial topology induced on <math>S</math> by the restrictions <math>\left\{\left.f_i\right|_S : S \to Y_i\right\}</math> of the <math>f_i</math> to <math>S.</math>{{sfn|Grothendieck|1973|p=2}} The [[product topology]] on <math>\prod_i Y_i</math> is equal to the initial topology induced by the canonical projections <math>\operatorname{pr}_i : \left(x_k\right)_{k \in I} \mapsto x_i</math> as <math>i</math> ranges over <math>I.</math>{{sfn|Grothendieck|1973|p=2}} Consequently, the initial topology on <math>X</math> induced by <math>\left\{f_i : X \to Y_i\right\}</math> is equal to the inverse image of the product topology on <math>\prod_i Y_i</math> by the [[#evaluation map|evaluation map]] <math display=inline>f : X \to \prod_i Y_i\,.</math>{{sfn|Grothendieck|1973|p=2}} Furthermore, if the maps <math>\left\{f_i\right\}_{i \in I}</math> [[#separate points|separate points]] on <math>X</math> then the evaluation map is a [[homeomorphism]] onto the subspace <math>f(X)</math> of the product space <math>\prod_i Y_i.</math>{{sfn|Grothendieck|1973|p=2}} ===Separating points from closed sets=== If a space <math>X</math> comes equipped with a topology, it is often useful to know whether or not the topology on <math>X</math> is the initial topology induced by some family of maps on <math>X.</math> This section gives a sufficient (but not necessary) condition. A family of maps <math>\left\{f_i : X \to Y_i\right\}</math> ''separates points from closed sets'' in <math>X</math> if for all [[closed set]]s <math>A</math> in <math>X</math> and all <math>x \not\in A,</math> there exists some <math>i</math> such that <math display=block>f_i(x) \notin \operatorname{cl}(f_i(A))</math> where <math>\operatorname{cl}</math> denotes the [[Closure (topology)|closure operator]]. :'''Theorem'''. A family of continuous maps <math>\left\{f_i : X \to Y_i\right\}</math> separates points from closed sets if and only if the cylinder sets <math>f_i^{-1}(V),</math> for <math>V</math> open in <math>Y_i,</math> form a [[Base (topology)|base for the topology]] on <math>X.</math> It follows that whenever <math>\left\{f_i\right\}</math> separates points from closed sets, the space <math>X</math> has the initial topology induced by the maps <math>\left\{f_i\right\}.</math> The converse fails, since generally the cylinder sets will only form a subbase (and not a base) for the initial topology. If the space <math>X</math> is a [[T0 space|T<sub>0</sub> space]], then any collection of maps <math>\left\{f_i\right\}</math> that separates points from closed sets in <math>X</math> must also separate points. In this case, the evaluation map will be an embedding. ===Initial uniform structure=== {{Main|Uniform space}} If <math>\left(\mathcal{U}_i\right)_{i \in I}</math> is a family of [[uniform structure]]s on <math>X</math> indexed by <math>I \neq \varnothing,</math> then the {{em|[[least upper bound]] uniform structure}} of <math>\left(\mathcal{U}_i\right)_{i \in I}</math> is the coarsest uniform structure on <math>X</math> that is finer than each <math>\mathcal{U}_i.</math> This uniform always exists and it is equal to the [[Filter (set theory)|filter]] on <math>X \times X</math> generated by the [[filter subbase]] <math>{\textstyle \bigcup\limits_{i \in I} \mathcal{U}_i}.</math>{{sfn|Grothendieck|1973|p=3}} If <math>\tau_i</math> is the topology on <math>X</math> induced by the uniform structure <math>\mathcal{U}_i</math> then the topology on <math>X</math> associated with least upper bound uniform structure is equal to the least upper bound topology of <math>\left(\tau_i\right)_{i \in I}.</math>{{sfn|Grothendieck|1973|p=3}} Now suppose that <math>\left\{f_i : X \to Y_i\right\}</math> is a family of maps and for every <math>i \in I,</math> let <math>\mathcal{U}_i</math> be a uniform structure on <math>Y_i.</math> Then the {{em|initial uniform structure of the <math>Y_i</math> by the mappings <math>f_i</math>}} is the unique coarsest uniform structure <math>\mathcal{U}</math> on <math>X</math> making all <math>f_i : \left(X, \mathcal{U}\right) \to \left(Y_i, \mathcal{U}_i\right)</math> [[uniformly continuous]].{{sfn|Grothendieck|1973|p=3}} It is equal to the least upper bound uniform structure of the <math>I</math>-indexed family of uniform structures <math>f_i^{-1}\left(\mathcal{U}_i\right)</math> (for <math>i \in I</math>).{{sfn|Grothendieck|1973|p=3}} The topology on <math>X</math> induced by <math>\mathcal{U}</math> is the coarsest topology on <math>X</math> such that every <math>f_i : X \to Y_i</math> is continuous.{{sfn|Grothendieck|1973|p=3}} The initial uniform structure <math>\mathcal{U}</math> is also equal to the coarsest uniform structure such that the identity mappings <math>\operatorname{id} : \left(X, \mathcal{U}\right) \to \left(X, f_i^{-1}\left(\mathcal{U}_i\right)\right)</math> are uniformly continuous.{{sfn|Grothendieck|1973|p=3}} '''Hausdorffness''': The topology on <math>X</math> induced by the initial uniform structure <math>\mathcal{U}</math> is [[Hausdorff space|Hausdorff]] if and only if for whenever <math>x, y \in X</math> are distinct (<math>x \neq y</math>) then there exists some <math>i \in I</math> and some entourage <math>V_i \in \mathcal{U}_i</math> of <math>Y_i</math> such that <math>\left(f_i(x), f_i(y)\right) \not\in V_i.</math>{{sfn|Grothendieck|1973|p=3}} Furthermore, if for every index <math>i \in I,</math> the topology on <math>Y_i</math> induced by <math>\mathcal{U}_i</math> is Hausdorff then the topology on <math>X</math> induced by the initial uniform structure <math>\mathcal{U}</math> is Hausdorff if and only if the maps <math>\left\{f_i : X \to Y_i\right\}</math> [[#separate points|separate points]] on <math>X</math>{{sfn|Grothendieck|1973|p=3}} (or equivalently, if and only if the [[#evaluation map|evaluation map]] <math display=inline>f : X \to \prod_i Y_i</math> is injective) '''Uniform continuity''': If <math>\mathcal{U}</math> is the initial uniform structure induced by the mappings <math>\left\{f_i : X \to Y_i\right\},</math> then a function <math>g</math> from some uniform space <math>Z</math> into <math>(X, \mathcal{U})</math> is [[uniformly continuous]] if and only if <math>f_i \circ g : Z \to Y_i</math> is uniformly continuous for each <math>i \in I.</math>{{sfn|Grothendieck|1973|p=3}} '''Cauchy filter''': A [[Filter (set theory)|filter]] <math>\mathcal{B}</math> on <math>X</math> is a [[Cauchy filter]] on <math>(X, \mathcal{U})</math> if and only if <math>f_i\left(\mathcal{B}\right)</math> is a Cauchy prefilter on <math>Y_i</math> for every <math>i \in I.</math>{{sfn|Grothendieck|1973|p=3}} '''Transitivity of the initial uniform structure''': If the word "topology" is replaced with "uniform structure" in the statement of "[[#Transitivity of the initial topology|transitivity of the initial topology]]" given above, then the resulting statement will also be true.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)