Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Initialized fractional calculus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Description of initialization== Working with a properly initialized differ integral is the subject of initialized fractional calculus. If the differ integral is initialized properly, then the hoped-for composition law holds. The problem is that in differentiation, information is lost, as with ''C'' in the first equation. However, in fractional calculus, given that the operator has been fractionalized and is thus continuous, an entire '''complementary function''' is needed. This is called complementary function <math>\Psi</math>. :<math>\mathbb{D}^q_t f(t) = \frac{1}{\Gamma(n-q)}\frac{d^n}{dt^n}\int_0^t (t-\tau)^{n-q-1}f(\tau)\,d\tau + \Psi(x)</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)