Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Intuitionistic logic
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Hilbert-style calculus === Intuitionistic logic can be defined using the following [[Hilbert-style deduction system|Hilbert-style calculus]]. This is similar to a way of axiomatizing classical [[propositional logic]].{{sfn|Bezhanishvili|De Jongh|page=8}} In propositional logic, the inference rule is [[modus ponens]] * MP: from <math>\phi \to \psi</math> and <math>\phi</math> infer <math>\psi</math> and the axioms are * THEN-1: <math>\psi \to (\phi \to \psi )</math> * THEN-2: <math>\big(\chi \to (\phi \to \psi )\big) \to \big((\chi \to \phi) \to (\chi \to \psi )\big)</math> * AND-1: <math>\phi \land \chi \to \phi </math> * AND-2: <math>\phi \land \chi \to \chi </math> * AND-3: <math>\phi \to \big(\chi \to (\phi \land \chi )\big)</math> * OR-1: <math>\phi \to \phi \lor \chi </math> * OR-2: <math>\chi \to \phi \lor \chi </math> * OR-3: <math>(\phi \to \psi ) \to \Big((\chi \to \psi ) \to \big((\phi \lor \chi) \to \psi )\Big)</math> * FALSE: <math>\bot \to \phi </math> To make this a system of first-order predicate logic, the [[generalization (logic)|generalization rules]] * <math>\forall </math>-GEN: from <math>\psi \to \phi </math> infer <math>\psi \to (\forall x \ \phi )</math>, if <math>x</math> is not free in <math>\psi </math> * <math>\exists </math>-GEN: from <math>\phi \to \psi </math> infer <math>(\exists x \ \phi ) \to \psi </math>, if <math>x</math> is not free in <math>\psi </math> are added, along with the axioms * PRED-1: <math>(\forall x \ \phi (x)) \to \phi (t)</math>, if the term <math>t</math> is free for substitution for the variable <math>x</math> in <math>\phi</math> (i.e., if no occurrence of any variable in <math>t</math> becomes bound in <math>\phi (t)</math>) * PRED-2: <math>\phi (t) \to (\exists x \ \phi (x))</math>, with the same restriction as for PRED-1 ==== Negation ==== If one wishes to include a connective <math>\neg</math> for negation rather than consider it an abbreviation for <math>\phi \to \bot </math>, it is enough to add: * NOT-1': <math>(\phi \to \bot ) \to \neg \phi </math> * NOT-2': <math>\neg \phi \to (\phi \to \bot )</math> There are a number of alternatives available if one wishes to omit the connective <math>\bot </math> (false). For example, one may replace the three axioms FALSE, NOT-1', and NOT-2' with the two axioms * NOT-1: <math>(\phi \to \chi ) \to \big((\phi \to \neg \chi ) \to \neg \phi \big)</math> * NOT-2: <math>\chi \to (\neg \chi \to \psi)</math> as at {{section link|Propositional calculus|Axioms}}. Alternatives to NOT-1 are <math>(\phi \to \neg \chi ) \to (\chi \to \neg \phi )</math> or <math>(\phi \to \neg \phi ) \to \neg \phi </math>. ==== Equivalence ==== The connective <math>\leftrightarrow </math> for equivalence may be treated as an abbreviation, with <math>\phi \leftrightarrow \chi </math> standing for <math>(\phi \to \chi ) \land (\chi \to \phi )</math>. Alternatively, one may add the axioms * IFF-1: <math>(\phi \leftrightarrow \chi ) \to (\phi \to \chi )</math> * IFF-2: <math>(\phi \leftrightarrow \chi ) \to (\chi \to \phi )</math> * IFF-3: <math>(\phi \to \chi ) \to ((\chi \to \phi ) \to (\phi \leftrightarrow \chi ))</math> IFF-1 and IFF-2 can, if desired, be combined into a single axiom <math>(\phi \leftrightarrow \chi ) \to ((\phi \to \chi ) \land (\chi \to \phi ))</math> using conjunction.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)