Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Inverse trigonometric functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===<span class="anchor" id="principal_value_anchor">Principal values</span>=== Since none of the six trigonometric functions are [[One-to-one function|one-to-one]], they must be restricted in order to have inverse functions. Therefore, the result [[Range of a function|range]]s of the inverse functions are proper (i.e. strict) [[subset]]s of the domains of the original functions. For example, using {{em|function}} in the sense of [[multivalued function]]s, just as the [[square root]] function <math>y = \sqrt{x}</math> could be defined from <math>y^2 = x,</math> the function <math>y = \arcsin(x)</math> is defined so that <math>\sin(y) = x.</math> For a given real number <math>x,</math> with <math>-1 \leq x \leq 1,</math> there are multiple (in fact, [[countably infinite]]ly many) numbers <math>y</math> such that <math>\sin(y) = x</math>; for example, <math>\sin(0) = 0,</math> but also <math>\sin(\pi) = 0,</math> <math>\sin(2 \pi) = 0,</math> etc. When only one value is desired, the function may be restricted to its [[principal branch]]. With this restriction, for each <math>x</math> in the domain, the expression <math>\arcsin(x)</math> will evaluate only to a single value, called its [[principal value]]. These properties apply to all the inverse trigonometric functions. The principal inverses are listed in the following table. {| class="wikitable" style="text-align:center" |- ! scope="col" | Name ! scope="col" | Usual notation ! scope="col" | Definition ! scope="col" | Domain of {{mvar|x}} for real result ! scope="col" | Range of usual principal value <br/>([[radian]]s) ! scope="col" | Range of usual principal value <br/>([[Degree (angle)|degrees]]) |- ! scope="row" | arcsine | {{math|1= ''y'' = arcsin(''x'')}} || {{math|1=''x'' = [[sine|sin]](''y'')}} || {{math|−1 ≤ ''x'' ≤ 1}} || {{math|−{{sfrac|π|2}} ≤ ''y'' ≤ {{sfrac|π|2}}}} || {{math|−90° ≤ ''y'' ≤ 90°}} |- ! scope="row" | arccosine | {{math|1= ''y'' = arccos(''x'')}} || {{math|1=''x'' = [[cosine|cos]](''y'')}} || {{math|−1 ≤ ''x'' ≤ 1}} || {{math|0 ≤ ''y'' ≤ π}} || {{math|0° ≤ ''y'' ≤ 180°}} |- ! scope="row" | arctangent | {{math|1= ''y'' = arctan(''x'')}} || {{math|1=''x'' = [[Tangent (trigonometry)|tan]](''y'')}} || all real numbers || {{math|−{{sfrac|π|2}} < ''y'' < {{sfrac|π|2}}}} || {{math|−90° < ''y'' < 90°}} |- ! scope="row" | arccotangent | {{math|1= ''y'' = arccot(''x'')}} || {{math|1=''x'' = [[cotangent|cot]](''y'')}} || all real numbers || {{math|0 < ''y'' < π}} || {{math|0° < ''y'' < 180°}} |- ! scope="row" | arcsecant | {{math|1= ''y'' = arcsec(''x'')}} || {{math|1=''x'' = [[Secant (trigonometry)|sec]](''y'')}} || {{math|{{abs|''x''}} ≥ 1}} || {{math|0 ≤ ''y'' < {{sfrac|π|2}}}} or {{math|{{sfrac|π|2}} < ''y'' ≤ π}} || {{math|0° ≤ ''y'' < 90°}} or {{math|90° < ''y'' ≤ 180°}} |- ! scope="row" | arccosecant | {{math|1= ''y'' = arccsc(''x'')}} ||{{math|1=''x'' = [[cosecant|csc]](''y'')}} || {{math|{{abs|''x''}} ≥ 1}} || {{math|−{{sfrac|π|2}} ≤ ''y'' < 0}} or {{math|0 < ''y'' ≤ {{sfrac|π|2}}}} || {{math|−90° ≤ ''y'' < 0}} or {{math|0° < ''y'' ≤ 90°}} |- |} Note: Some authors define the range of arcsecant to be {{nowrap|(<math display="inline">0 \leq y < \frac{\pi}{2}</math>}} or {{nowrap|<math display="inline">\pi \leq y < \frac{3 \pi}{2}</math> ),}}<ref>For example: {{pb}} {{cite book |last1=Stewart |first1=James |last2=Clegg |first2=Daniel |last3=Watson |first3=Saleem |year=2021 |title=Calculus: Early Transcendentals |edition=9th |isbn=978-1-337-61392-7 |chapter=Inverse Functions and Logarithms |publisher=Cengage Learning |at=§ 1.5, {{pgs|64}} }}</ref> because the tangent function is nonnegative on this domain. This makes some computations more consistent. For example, using this range, <math>\tan(\arcsec(x)) = \sqrt{x^2 - 1},</math> whereas with the range {{nowrap|(<math display="inline">0 \leq y < \frac{\pi}{2}</math>}} or {{nowrap|<math display="inline">\frac{\pi}{2} < y \leq \pi</math>),}} we would have to write <math>\tan(\arcsec(x)) = \pm \sqrt{x^2 - 1},</math> since tangent is nonnegative on <math display="inline">0 \leq y < \frac{\pi}{2},</math> but nonpositive on <math display="inline">\frac{\pi}{2} < y \leq \pi.</math> For a similar reason, the same authors define the range of arccosecant to be <math display="inline">( - \pi < y \leq - \frac{\pi}{2}</math> or <math display="inline">0 < y \leq \frac{\pi}{2} ) .</math> ====Domains==== If {{mvar|x}} is allowed to be a [[complex number]], then the range of {{mvar|y}} applies only to its real part. {{DomainsImagesAndPrototypesOfTrigAndInverseTrigFunctions |includeTableDescription=true |includeExplanationOfNotation=true }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)