Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Jupiter
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Physical characteristics == Jupiter is a [[gas giant]], meaning its chemical composition is primarily hydrogen and helium. These materials are classified as ''gasses'' in planetary geology, a term that does not denote the state of matter. It is the largest planet in the Solar System, with a diameter of {{cvt|142984|km|0}} at its [[equator]], giving it a volume 1,321 times that of the Earth.<ref name="fact"/><ref>{{cite book|page=419|title=Regents Exams and Answers: Earth Science—Physical Setting 2020|last1=Denecke|first1=Edward J.|date=January 7, 2020|publisher=Barrons Educational Series|isbn=978-1-5062-5399-2}}</ref> Its average density, 1.326 g/cm<sup>3</sup>,{{refn |group=lower-alpha |About the same as [[Inverted sugar syrup|sugar syrup]] (syrup [[United States Pharmacopeia|USP]]),<ref name=Swarbrick2013>{{cite book | title=Encyclopedia of Pharmaceutical Technology | first=James | last=Swarbrick | date=2013 | page=3601 | volume=6 | isbn=978-1-4398-0823-8 | publisher=CRC Press | url=https://books.google.com/books?id=w2C1DwAAQBAJ&pg=PA3601 | quote="Syrup USP (1.31 g/cm<sup>3</sup>)" | access-date=March 19, 2023 | archive-date=March 26, 2023 | archive-url=https://web.archive.org/web/20230326164802/https://books.google.com/books?id=w2C1DwAAQBAJ&pg=PA3601 | url-status=live }}</ref>}} is lower than those of the four [[terrestrial planet]]s.<ref>{{cite book | title=Allen's Astrophysical Quantities | last1=Allen | first1=Clabon Walter | author-link1=Clabon Allen | last2=Cox | first2=Arthur N. | publisher=Springer | date=2000 | pages=295–296 | isbn=978-0-387-98746-0 | url=https://books.google.com/books?id=w8PK2XFLLH8C&pg=PA296 | access-date=March 18, 2022 | archive-date=February 21, 2023 | archive-url=https://web.archive.org/web/20230221195213/https://books.google.com/books?id=w8PK2XFLLH8C&pg=PA296 | url-status=live }}</ref><ref>{{cite book | page=1041 | title=A Concise Handbook of Mathematics, Physics, and Engineering Sciences | last1=Polyanin | first1=Andrei D. | last2=Chernoutsan | first2=Alexei | date=October 18, 2010 | publisher=CRC Press | isbn=978-1-4398-0640-1 }}</ref> === Composition === The [[atmosphere of Jupiter]] is approximately 76% hydrogen and 24% helium by mass. By volume, the upper atmosphere is about 90% hydrogen and 10% helium, with the lower proportion owing to the individual helium atoms being more massive than the molecules of hydrogen formed in this part of the atmosphere.<ref>{{cite journal| title=NOTE: New Constraints on the Composition of Jupiter from Galileo Measurements and Interior Models | last1=Guillot | first1=Tristan | last2=Gautier | first2=Daniel | last3=Hubbard | first3=William B. |journal=Icarus | volume=130 | issue=2 | pages=534–539 | date=December 1997 | doi=10.1006/icar.1997.5812 | arxiv=astro-ph/9707210 | bibcode=1997Icar..130..534G | s2cid=5466469 }}</ref> The atmosphere contains trace amounts of elemental [[carbon]], [[oxygen]], [[sulfur]], and [[neon]],<ref>{{cite book|title=Jupiter: The Planet, Satellites and Magnetosphere |editor-first=Fran |editor-last=Bagenal |editor-first2=Timothy E. |editor-last2=Dowling |editor-first3=William B. |editor-last3=McKinnon |publisher=Cambridge University Press |year=2006 |isbn=0521035457 |pages=59–75}}</ref> as well as [[ammonia]], [[water vapour]], [[phosphine]], [[hydrogen sulfide]], and [[hydrocarbons]] like [[methane]], [[ethane]] and [[benzene]].<ref>{{cite journal |journal=Icarus |volume=64 |issue=2 |pages=233–248 |year=1985 |title=Infrared Polar Brightening on Jupiter III. Spectrometry from the Voyager 1 IRIS Experiment |bibcode=1985Icar...64..233K | last1=Kim | first1=S. J. | last2=Caldwell | first2=J. | last3=Rivolo | first3=A. R. | last4=Wagner | first4=R. |doi=10.1016/0019-1035(85)90201-5}}</ref> Its outermost layer contains [[crystal]]s of frozen ammonia.<ref>{{cite journal|title=Zonal Features in the Behavior of Weak Molecular Absorption Bands on Jupiter|first1=V. D. |last1=Vdovichenko |first2=A. M. |last2=Karimov |first3=G. A. |last3=Kirienko |first4=P. G. |last4=Lysenko |first5=V. G. |last5=Tejfel’ |first6=V. A. |last6=Filippov |first7=G. A. |last7=Kharitonova |first8=A. P. |last8=Khozhenets |journal=Solar System Research |volume=55 |pages=35–46 |year=2021 |issue=1 |doi=10.1134/S003809462101010X |bibcode=2021SoSyR..55...35V |s2cid=255069821 }}</ref> The planet's interior is denser, with a composition of roughly 71% hydrogen, 24% helium, and 5% other elements by mass.<ref name="voyager">{{cite journal | last1=Gautier | first1=D. | last2=Conrath | first2=B. | last3=Flasar | first3=M. | last4=Hanel | first4=R. | last5=Kunde | first5=V. | last6=Chedin | first6=A. | last7=Scott | first7=N. |title=The helium abundance of Jupiter from Voyager |journal=Journal of Geophysical Research |volume=86 |issue=A10 |pages=8713–8720 |year=1981 |bibcode=1981JGR....86.8713G |doi=10.1029/JA086iA10p08713|hdl=2060/19810016480 |s2cid=122314894 |hdl-access=free }}</ref><ref name="cassini">{{cite journal | last1=Kunde | first1=V. G. | last2=Flasar | first2=F. M. | last3=Jennings | first3=D. E. | last4=Bézard | first4=B. | last5=Strobel | first5=D. F. | last6=Conrath | first6=B. J. | last7=Nixon | first7=C. A. | last8=Bjoraker | first8=G. L. | last9=Romani | first9=P. N. | last10=Achterberg | first10=R. K. | last11=Simon-Miller | first11=A. A. | last12=Irwin | first12=P. | last13=Brasunas | first13=J. C. | last14=Pearl | first14=J. C. | last15=Smith | first15=M. D. | last16=Orton | first16=G. S. | last17=Gierasch | first17=P. J. | last18=Spilker | first18=L. J. | last19=Carlson | first19=R. C. | last20=Mamoutkine | first20=A. A. | last21=Calcutt | first21=S. B. | last22=Read | first22=P. L. | last23=Taylor | first23=F. W. | last24=Fouchet | first24=T. | last25=Parrish | first25=P. | last26=Barucci | first26=A. | last27=Courtin | first27=R. | last28=Coustenis | first28=A. | last29=Gautier | first29=D. | last30=Lellouch | first30=E. | last31=Marten | first31=A. | last32=Prangé | first32=R. | last33=Biraud | first33=Y. | last34=Ferrari | first34=C. | last35=Owen | first35=T. C. | last36=Abbas | first36=M. M. | last37=Samuelson | first37=R. E. | last38=Raulin | first38=F. | last39=Ade | first39=P. | last40=Césarsky | first40=C. J. | last41=Grossman | first41=K. U. | last42=Coradini | first42=A. | display-authors=5 | title=Jupiter's Atmospheric Composition from the Cassini Thermal Infrared Spectroscopy Experiment | journal=Science | date=September 10, 2004 | volume=305 | issue=5690 | pages=1582–1586 | doi=10.1126/science.1100240 | pmid=15319491 | bibcode=2004Sci...305.1582K | s2cid=45296656 | doi-access=free }}</ref> The atmospheric proportions of hydrogen and helium are close to the theoretical composition of the primordial [[solar nebula]].<ref>{{cite web|title=Solar Nebula Supermarket|date=December 2017 |publisher=nasa.gov|url=https://solarsystem.nasa.gov/genesismission/educate/scimodule/PlanetaryDiversity/plandiv_pdf/SupermarketST.pdf|access-date=July 10, 2023|archive-date=July 17, 2023|archive-url=https://web.archive.org/web/20230717222001/https://solarsystem.nasa.gov/genesismission/educate/scimodule/PlanetaryDiversity/plandiv_pdf/SupermarketST.pdf|url-status=live}}</ref> Neon in the upper atmosphere consists of 20 parts per million by mass, which is about a tenth as abundant as in the Sun.<ref>{{cite journal | last1=Niemann | first1=H. B. | last2=Atreya | first2=S. K. | last3=Carignan | first3=G. R. | last4=Donahue | first4=T. M. | last5=Haberman | first5=J. A. | last6=Harpold | first6=D. N. | last7=Hartle | first7=R. E. | last8=Hunten | first8=D. M. | last9=Kasprzak | first9=W. T. | last10=Mahaffy | first10=P. R. | last11=Owen | first11=T. C. | last12=Spencer | first12=N. W. | last13=Way | first13=S. H. | display-authors=5 | title=The Galileo Probe Mass Spectrometer: Composition of Jupiter's Atmosphere | journal=Science | year=1996 | volume=272 | issue=5263 | pages=846–849 | bibcode=1996Sci...272..846N | doi=10.1126/science.272.5263.846 | pmid=8629016| s2cid=3242002 }}</ref> Jupiter's helium abundance is about 80% that of the Sun due to the [[Precipitation (meteorology)|precipitation]] of these elements as helium-rich droplets, a process that happens deep in the planet's interior.<ref name="galileo_ms">{{cite journal |first1=U. |last1=von Zahn |first2=D. M. |last2=Hunten |first3=G. |last3=Lehmacher |title=Helium in Jupiter's atmosphere: Results from the Galileo probe Helium Interferometer Experiment |journal=Journal of Geophysical Research |year=1998 |volume=103 |issue=E10 |pages=22815–22829 |doi=10.1029/98JE00695 |bibcode=1998JGR...10322815V |doi-access=free }}</ref><ref name="Juno">{{cite journal |title=Jupiter's Interior as Revealed by Juno |last=Stevenson |first=David J. |journal=Annual Review of Earth and Planetary Sciences |volume=48 |pages=465–489 |date=May 2020 |doi=10.1146/annurev-earth-081619-052855 |bibcode=2020AREPS..48..465S |s2cid=212832169 |doi-access=free }}</ref> Based on [[spectroscopy]], [[Saturn]] is thought to be similar in composition to Jupiter, but the other giant planets [[Uranus]] and [[Neptune]] have relatively less hydrogen and helium and relatively more of the next [[Abundance of the chemical elements|most common elements]], including oxygen, carbon, nitrogen, and sulfur.<ref>{{cite web | last1=Ingersoll | first1=A. P. | last2=Hammel | first2=H. B. | last3=Spilker | first3=T. R. | last4=Young | first4=R. E. | date=June 1, 2005 | url=http://www.lpi.usra.edu/opag/outer_planets.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://www.lpi.usra.edu/opag/outer_planets.pdf |archive-date=October 9, 2022 |url-status=live | title=Outer Planets: The Ice Giants | publisher=Lunar & Planetary Institute | access-date=February 1, 2007 }}</ref> These planets are known as [[ice giants]] because during their formation, these elements are thought to have been incorporated into them as ice; however, they probably contain very little ice.<ref name=icegiantatmospheres>{{citation | url=https://www.lpi.usra.edu/decadal/opag/IceGiantAtmospheres_v7.pdf | last=Hofstadter | first=Mark | title=The Atmospheres of the Ice Giants, Uranus and Neptune | year=2011 | publisher=[[National Research Council (United States)|US National Research Council]] | access-date=January 18, 2015 | work=White Paper for the [[Planetary Science Decadal Survey]] | pages=1–2 | archive-date=July 17, 2023 | archive-url=https://web.archive.org/web/20230717232018/https://www.lpi.usra.edu/decadal/opag/IceGiantAtmospheres_v7.pdf | url-status=live }}</ref> === Size and mass === {{Main|Jupiter mass}} [[File:Jupiter size.png|alt=Refer to caption|thumb|Size of Jupiter compared to Earth and Earth's Moon]] Jupiter is about eleven times wider than the Earth ({{val|11.209|ul=R_Earth}}); while its mass is 318 times that of Earth<ref name="fact"/> which is 2.5 times the mass of all the other planets in the Solar System combined. It is so massive that its [[barycentre]] with the Sun lies above the [[Photosphere|Sun's surface]] at 1.068 [[solar radius|solar radii]] from the Sun's centre.<ref>{{cite book |last=MacDougal |first=Douglas W. |title=Newton's Gravity |url=https://archive.org/details/newtonsgravityin00macd |url-access=limited |year=2012 |publisher=Springer New York |isbn=978-1-4614-5443-4 |pages=[https://archive.org/details/newtonsgravityin00macd/page/n208 193]–211 |language=en |chapter=A Binary System Close to Home: How the Moon and Earth Orbit Each Other |quote=the barycentre is 743,000 km from the centre of the Sun. The Sun's radius is 696,000 km, so it is 47,000 km above the surface.|doi=10.1007/978-1-4614-5444-1_10 |series=Undergraduate Lecture Notes in Physics }}</ref><ref name="burgess">{{cite book |first=Eric |last=Burgess |date=1982 |title=By Jupiter: Odysseys to a Giant |publisher=Columbia University Press |location=New York |isbn=978-0-231-05176-7}}</ref> Jupiter's radius is about one tenth the radius of the Sun ({{val|0.10276|ul=R_Solar}}),<ref name="shu82">{{cite book |first=Frank H. |last=Shu |date=1982 |title=The physical universe: an introduction to astronomy |page=[https://archive.org/details/physicaluniverse00shuf/page/426 426] |series=Series of books in astronomy |edition=12th |publisher=University Science Books |isbn=978-0-935702-05-7 |url=https://archive.org/details/physicaluniverse00shuf/page/426 }}</ref> and its mass is one thousandth the [[Solar mass|mass of the Sun]], of which the densities of the two bodies are similar.<ref name="davis_turekian05">{{cite book | last1=Davis | first1=Andrew M. | last2=Turekian | first2=Karl K. | title=Meteorites, comets, and planets | volume=1 | series=Treatise on geochemistry | publisher=Elsevier | date=2005 | isbn=978-0-08-044720-9 | page=624}}</ref> A "[[Jupiter mass]]" ({{Jupiter mass}} or {{Jupiter mass|Jup=y}}) is used as a unit to describe masses of other objects, particularly [[extrasolar planet]]s and [[brown dwarf]]s. For example, the extrasolar planet [[HD 209458 b]] has a mass of {{Jupiter mass|0.69}}, while the brown dwarf [[Gliese 229 b]] has a mass of {{Jupiter mass|60.4}}.<ref>{{cite encyclopedia |url=https://exoplanet.eu/home/ |title=The Extrasolar Planets Encyclopedia: Interactive Catalogue |first=Jean |last=Schneider |year=2009 |access-date=August 9, 2014 |archive-date=October 28, 2023 |archive-url=https://web.archive.org/web/20231028155019/https://exoplanet.eu/home/ |encyclopedia=[[Extrasolar Planets Encyclopaedia]] |url-status=live }}</ref><ref name="Feng2022">{{cite journal |last1=Feng |first1=Fabo |last2=Butler |first2=R. Paul |display-authors=etal |date=August 2022 |title=3D Selection of 167 Substellar Companions to Nearby Stars |journal=[[The Astrophysical Journal Supplement Series]] |volume=262 |issue=21 |page=21 |doi=10.3847/1538-4365/ac7e57 |arxiv=2208.12720 |bibcode=2022ApJS..262...21F|s2cid=251864022 |doi-access=free }}</ref> Theoretical models indicate that if Jupiter had over 40% more mass, the interior would be so compressed that its volume would ''decrease'' despite the increasing amount of matter. For smaller changes in its mass, the [[radius]] would not change appreciably.<ref name="Seager2007">{{cite journal | last1=Seager | first1=S. | last2=Kuchner | first2=M. | last3=Hier-Majumder | first3=C. A. | last4=Militzer | first4=B. | title=Mass-Radius Relationships for Solid Exoplanets | journal=The Astrophysical Journal | volume=669 | issue=2 | pages=1279–1297 | year=2007 | doi=10.1086/521346 | arxiv=0707.2895 | bibcode=2007ApJ...669.1279S | s2cid=8369390 }}</ref> As a result, Jupiter is thought to have about as large a diameter as a planet of its composition and evolutionary history can achieve.<ref name="HTUW">{{cite AV media | title=How the Universe Works 3 | volume=Jupiter: Destroyer or Savior? |year=2014 | publisher=Discovery Channel}}</ref> The process of further shrinkage with increasing mass would continue until appreciable [[stellar ignition]] was achieved.<ref name="tristan286">{{cite journal | last=Guillot | first=Tristan | title=Interiors of Giant Planets Inside and Outside the Solar System | journal=Science | year=1999 | volume=286 | issue=5437 | pages=72–77 | doi=10.1126/science.286.5437.72 | pmid=10506563 | bibcode=1999Sci...286...72G | access-date=April 24, 2022 | url=http://web.gps.caltech.edu/~mbrown/classes/ge131/notes/guillot.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://web.gps.caltech.edu/~mbrown/classes/ge131/notes/guillot.pdf |archive-date=October 9, 2022 |url-status=live }}</ref> Although Jupiter would need to be about 75 times more massive to [[hydrogen fusion|fuse hydrogen]] and become a [[star]],<ref>{{cite journal | title=The theory of brown dwarfs and extrasolar giant planets | last1=Burrows | first1=Adam | last2=Hubbard | first2=W. B. | last3=Lunine | first3=J. I. | last4=Liebert | first4=James | journal=Reviews of Modern Physics | volume=73 | issue=3 | pages=719–765 | date=July 2001 | doi=10.1103/RevModPhys.73.719 | arxiv=astro-ph/0103383 | bibcode=2001RvMP...73..719B | s2cid=204927572 | quote=Hence the HBMM at solar metallicity and Y<sub>α</sub> = 50.25 is 0.07 – 0.074 {{solar mass}}, ... while the HBMM at zero metallicity is 0.092 {{solar mass}} }}</ref> its diameter is sufficient as the smallest [[red dwarf]] may be slightly larger in radius than Saturn.<ref>{{cite journal | title=The EBLM project. III. A Saturn-size low-mass star at the hydrogen-burning limit | last1=von Boetticher | first1=Alexander | last2=Triaud | first2=Amaury H. M. J. | last3=Queloz | first3=Didier | last4=Gill | first4=Sam | last5=Lendl | first5=Monika | last6=Delrez | first6=Laetitia | last7=Anderson | first7=David R. | last8=Collier Cameron | first8=Andrew | last9=Faedi | first9=Francesca | last10=Gillon | first10=Michaël | last11=Gómez Maqueo Chew | first11=Yilen | last12=Hebb | first12=Leslie | last13=Hellier | first13=Coel | last14=Jehin | first14=Emmanuël | last15=Maxted | first15=Pierre F. L. | last16=Martin | first16=David V. | last17=Pepe | first17=Francesco | last18=Pollacco | first18=Don | last19=Ségransan | first19=Damien | last20=Smalley | first20=Barry | last21=Udry | first21=Stéphane | last22=West | first22=Richard | journal=Astronomy & Astrophysics | volume=604 | id=L6 | pages=6 | date=August 2017 | doi=10.1051/0004-6361/201731107 | arxiv=1706.08781 | bibcode=2017A&A...604L...6V | s2cid=54610182 }}</ref> Jupiter radiates more heat than it receives through solar radiation, due to the [[Kelvin–Helmholtz mechanism]] within its contracting interior.<ref name="elkins-tanton">{{cite book | first=Linda T. | last=Elkins-Tanton |date=2011 | title=Jupiter and Saturn | publisher=Chelsea House | location=New York | isbn=978-0-8160-7698-7 | edition=revised }}</ref>{{rp|30}}<ref>{{cite book | title=Giant Planets of Our Solar System: Atmospheres, Composition, and Structure | first=Patrick | last=Irwin | date=2003 | page=62 | isbn=978-3-540-00681-7 | publisher=Springer Science & Business Media | url=https://books.google.com/books?id=p8wCsJweUb0C&pg=PA62 | access-date=April 23, 2022 | archive-date=June 19, 2024 | archive-url=https://web.archive.org/web/20240619015914/https://books.google.com/books?id=p8wCsJweUb0C&pg=PA62#v=onepage&q&f=false | url-status=live }}</ref> This process causes Jupiter to shrink by about {{cvt|1|mm}} per year.<ref>{{cite book | title = Giant Planets of Our Solar System: Atmospheres, Composition, and Structure | first = Patrick G. J. | last = Irwin | publisher = Springer | orig-year = 2003 | url = https://books.google.com/books?id=p8wCsJweUb0C&q=%22kelvin+helmholtz+mechanism%22&pg=PA63 | edition = Second | year = 2009 | page = 4 | quote = the radius of Jupiter is estimated to be currently shrinking by approximately 1 mm/yr | isbn = 978-3-642-09888-8 | access-date = March 6, 2021 | archive-date = June 19, 2024 | archive-url = https://web.archive.org/web/20240619015915/https://books.google.com/books?id=p8wCsJweUb0C&q=%22kelvin+helmholtz+mechanism%22&pg=PA63#v=snippet&q=%22kelvin%20helmholtz%20mechanism%22&f=false | url-status = live }}.</ref><ref name="guillot04">{{cite book | editor1-last=Bagenal | editor1-first=Fran | editor2-last=Dowling | editor2-first=Timothy E. | editor3-last=McKinnon | editor3-first=William B. | last1=Guillot | first1=Tristan | last2=Stevenson | first2=David J. | last3=Hubbard | first3=William B. | last4=Saumon | first4=Didier | date=2004 | title=Jupiter: The Planet, Satellites and Magnetosphere | chapter=Chapter 3: The Interior of Jupiter | publisher=[[Cambridge University Press]] | isbn=978-0-521-81808-7 }}</ref> At the time of its formation, Jupiter was hotter and was about twice its current diameter.<ref>{{cite journal |last=Bodenheimer |first=P. |title=Calculations of the early evolution of Jupiter |series=23 |journal=Icarus |year=1974 |issue=3 |volume=23 |pages=319–325 |bibcode=1974Icar...23..319B |doi=10.1016/0019-1035(74)90050-5}}</ref> === Internal structure === [[File:Jupiter diagram.svg|thumb|upright=2|alt=Refer to caption|Diagram of Jupiter with its interior, surface features, rings, and inner moons]] Before the early 21st century, most scientists proposed one of two scenarios for the formation of Jupiter. If the planet accreted first as a solid body, it would consist of a dense [[planetary core|core]], a surrounding layer of fluid [[metallic hydrogen]] (with some helium) extending outward to about 80% of the radius of the planet,<ref>{{cite journal | last=Smoluchowski | first=R. | year=1971 | title=Metallic interiors and magnetic fields of Jupiter and Saturn | journal=The Astrophysical Journal | volume=166 | page=435 | doi=10.1086/150971 | bibcode=1971ApJ...166..435S | doi-access=free }}</ref> and an outer atmosphere consisting primarily of [[molecular hydrogen]].<ref name="guillot04"/> Alternatively, if the planet collapsed directly from the gaseous [[protoplanetary disk]], it was expected to completely lack a core, consisting instead of a denser and denser fluid (predominantly molecular and metallic hydrogen) all the way to the centre. Data from the [[Juno (spacecraft)|''Juno'' mission]] showed that Jupiter has a diffuse core that mixes into its mantle, extending for 30–50% of the planet's radius, and comprising heavy elements with a combined mass 7–25 times the Earth.<ref>{{cite journal |last1=Wahl |first1=S. M. |last2=Hubbard |first2=William B. |last3=Militzer |first3=B. |last4=Guillot |first4=Tristan |last5=Miguel |first5=Y. |last6=Movshovitz |first6=N. |last7=Kaspi |first7=Y. |last8=Helled |first8=R. |last9=Reese |first9=D. |last10=Galanti |first10=E. |last11=Levin |first11=S. |last12=Connerney |first12=J. E. |last13=Bolton |first13=S. J. |title=Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core |journal=Geophysical Research Letters |volume=44 |issue=10 |pages=4649–4659 |year=2017 |doi=10.1002/2017GL073160 |doi-access=free |arxiv=1707.01997 |bibcode=2017GeoRL..44.4649W }}</ref><ref name=dilute>{{cite journal|title=The Formation of Jupiter's Diluted Core by a Giant Impact|journal=Nature|date=August 15, 2019|author=Shang-Fei Liu|display-authors=et al.|doi=10.1038/s41586-019-1470-2|volume=572|issue=7769 |pages=355–357|pmid=31413376 |arxiv=2007.08338|bibcode=2019Natur.572..355L |s2cid=199576704 }}</ref><ref name="NYT-20160705">{{cite news |last=Chang |first=Kenneth |date=July 5, 2016 |title=NASA's Juno Spacecraft Enters Jupiter's Orbit |work=[[The New York Times]] |url=https://www.nytimes.com/2016/07/05/science/juno-enters-jupiters-orbit-capping-5-year-voyage.html |access-date=July 5, 2016 |archive-date=May 2, 2019 |archive-url=https://web.archive.org/web/20190502211501/https://www.nytimes.com/2016/07/05/science/juno-enters-jupiters-orbit-capping-5-year-voyage.html |url-status=live }}</ref> This mixing process could have arisen during formation, while the planet accreted solids and gases from the surrounding nebula.<ref name="stevenson2022">{{cite journal| last1=Stevenson| first1=D. J.| last2=Bodenheimer| first2=P.| last3=Lissauer| first3=J. J.| last4=D'Angelo| first4=G.| title= Mixing of Condensable Constituents with H-He during the Formation and Evolution of Jupiter|year=2022| journal=The Planetary Science Journal| volume=3| pages=id.74| issue=4| doi=10.3847/PSJ/ac5c44| arxiv=2202.09476| bibcode=2022PSJ.....3...74S| s2cid=247011195| doi-access=free}}</ref> Alternatively, it could have been caused by an impact from a planet of about ten Earth masses a few million years after Jupiter's formation, which would have disrupted an originally compact Jovian core.<ref name=dilute/><ref name="nature2019_2">{{cite journal| last=Guillot| first=T.|year=2019| journal=Nature| pages=315–317| issue=7769| title=Signs that Jupiter was mixed by a giant impact| volume=572| doi=10.1038/d41586-019-02401-1| pmid=31413374| bibcode=2019Natur.572..315G| doi-access=free}}</ref> Outside the layer of metallic hydrogen lies a transparent interior atmosphere of hydrogen. At this depth, the pressure and temperature are above molecular hydrogen's [[critical pressure]] of 1.3 [[Pascal (unit)|MPa]] and [[critical temperature]] of {{cvt|33|K|C F|lk=on}}.<ref>{{cite journal | title=Dynamic transition of supercritical hydrogen: Defining the boundary between interior and atmosphere in gas giants | last1=Trachenko | first1=K. | last2=Brazhkin | first2=V. V. | last3=Bolmatov | first3=D. | journal=Physical Review E | volume=89 | issue=3 | id=032126 | date=March 2014 | page=032126 | doi=10.1103/PhysRevE.89.032126 | pmid=24730809 | arxiv=1309.6500 | bibcode=2014PhRvE..89c2126T | s2cid=42559818 }}</ref> In this state, there are no distinct liquid and gas phases—hydrogen is said to be in a [[supercritical fluid]] state. The hydrogen and helium gas extending downward from the cloud layer gradually transitions to a liquid in deeper layers, possibly resembling something akin to an ocean of liquid hydrogen and other supercritical fluids.<ref name="elkins-tanton"/>{{rp|22}}<ref>{{cite web | first=Dauna | last=Coulter | title=A Freaky Fluid inside Jupiter? | url=https://science.nasa.gov/science-news/science-at-nasa/2011/09aug_juno3 | website=[[NASA]] | access-date=December 8, 2021 | archive-date=December 9, 2021 | archive-url=https://web.archive.org/web/20211209022840/https://science.nasa.gov/science-news/science-at-nasa/2011/09aug_juno3 | url-status=dead }}</ref><ref>{{cite web|title= NASA System Exploration Jupiter|url= https://solarsystem.nasa.gov/planets/jupiter/in-depth.amp|website= [[NASA]]|access-date= December 8, 2021|archive-date= November 4, 2021|archive-url= https://web.archive.org/web/20211104172628/https://solarsystem.nasa.gov/planets/jupiter/in-depth.amp|url-status= live}}</ref> Physically, the gas gradually becomes hotter and denser as depth increases.<ref>{{cite journal |last=Guillot |first=T. |title=A comparison of the interiors of Jupiter and Saturn |journal=Planetary and Space Science |year=1999 |volume=47 |issue=10–11 |pages=1183–1200 |bibcode=1999P&SS...47.1183G |arxiv=astro-ph/9907402 |doi=10.1016/S0032-0633(99)00043-4 |s2cid=19024073 |url=https://cds.cern.ch/record/394768 |access-date=June 21, 2023 |archive-date=May 19, 2021 |archive-url=https://web.archive.org/web/20210519002044/http://cds.cern.ch/record/394768 |url-status=live }}</ref><ref name="lang03">{{cite web |last=Lang |first=Kenneth R. |year=2003 |url=http://ase.tufts.edu/cosmos/view_chapter.asp?id=9&page=3 |title=Jupiter: a giant primitive planet |publisher=NASA |access-date=January 10, 2007 |archive-date=May 14, 2011 |archive-url=https://web.archive.org/web/20110514093512/http://ase.tufts.edu/cosmos/view_chapter.asp?id=9&page=3 |url-status=dead }}</ref> Rain-like droplets of helium and neon precipitate downward through the lower atmosphere, depleting the abundance of these elements in the upper atmosphere.<ref name="galileo_ms"/><ref>{{cite journal |last=Lodders |first=Katharina|author-link=Katharina Lodders |title=Jupiter Formed with More Tar than Ice |journal=The Astrophysical Journal |year=2004 |volume=611 |issue=1 |pages=587–597 |doi=10.1086/421970 |bibcode=2004ApJ...611..587L|s2cid=59361587 |url=http://pdfs.semanticscholar.org/afa4/68519084fe3a3076b614442803056943e202.pdf |archive-url=https://web.archive.org/web/20200412141533/http://pdfs.semanticscholar.org/afa4/68519084fe3a3076b614442803056943e202.pdf |url-status=dead |archive-date=April 12, 2020 }}</ref> Calculations suggest that helium drops separate from metallic hydrogen at a radius of {{Convert|60000|km|mi|abbr=unit}} ({{Convert|11000|km|mi|abbr=unit|disp=sqbr}} below the cloud tops) and merge again at {{Convert|50000|km|mi|abbr=unit}} ({{Convert|22000|km|mi|abbr=unit|disp=sqbr}} beneath the clouds).<ref>{{cite journal | title=Evidence of hydrogen−helium immiscibility at Jupiter-interior conditions | last1=Brygoo | first1=S. | last2=Loubeyre | first2=P. | last3=Millot | first3=M. | last4=Rygg | first4=J. R. | last5=Celliers | first5=P. M. | last6=Eggert | first6=J. H. | last7=Jeanloz | first7=R. | last8=Collins | first8=G. W. | journal=Nature | volume=593 | issue=7860 | pages=517–521 | year=2021 | doi=10.1038/s41586-021-03516-0 | pmid=34040210 | bibcode=2021Natur.593..517B | osti=1820549 | s2cid=235217898 }}</ref> Rainfalls of [[extraterrestrial diamonds|diamonds]] have been suggested to occur, as well as on Saturn<ref name="SC-20131009">{{cite news |last=Kramer |first=Miriam |title=Diamond Rain May Fill Skies of Jupiter and Saturn |url=https://www.space.com/23135-diamond-rain-jupiter-saturn.html |date=October 9, 2013 |work=[[Space.com]] |access-date=August 27, 2017 |archive-date=August 27, 2017 |archive-url=https://web.archive.org/web/20170827171415/https://www.space.com/23135-diamond-rain-jupiter-saturn.html |url-status=live }}</ref> and the ice giants Uranus and Neptune.<ref name="WP-20170825">{{cite news |last=Kaplan |first=Sarah |title=It rains solid diamonds on Uranus and Neptune |url=https://www.washingtonpost.com/news/speaking-of-science/wp/2017/08/25/it-rains-solid-diamonds-on-uranus-and-neptune/ |date=August 25, 2017 |newspaper=[[The Washington Post]] |access-date=August 27, 2017 |archive-date=August 27, 2017 |archive-url=https://web.archive.org/web/20170827011901/https://www.washingtonpost.com/news/speaking-of-science/wp/2017/08/25/it-rains-solid-diamonds-on-uranus-and-neptune/ |url-status=live }}</ref> The temperature and pressure inside Jupiter increase steadily inward as the heat of planetary formation can only escape by convection.<ref name="Juno"/> At a surface depth where the atmospheric pressure level is {{cvt|1|bar|MPa|lk=on}}, the temperature is around {{cvt|165|K|C F}}. The region where supercritical hydrogen changes gradually from a molecular fluid to a metallic fluid spans pressure ranges of {{cvt|500000|-|4000000|bar|GPa|disp=out}} with temperatures of {{cvt|5000|-|8400|K|C F}}, respectively. The temperature of Jupiter's diluted core is estimated to be {{cvt|20000|K|C F}} with a pressure of around {{convert|40|e6bar|GPa|disp=out|abbr=unit}}.<ref name=Guillot_et_al_2004>{{cite book | chapter=The interior of Jupiter | bibcode=2004jpsm.book...35G | last1=Guillot | first1=Tristan | last2=Stevenson | first2=David J. | last3=Hubbard | first3=William B. | last4=Saumon | first4=Didier | title=Jupiter. The planet, satellites and magnetosphere | editor1-first=Fran | editor1-last=Bagenal | editor2-first=Timothy E. | editor2-last=Dowling | editor3-first=William B. | editor3-last=McKinnon | series=Cambridge planetary science | volume=1 | publication-place=Cambridge, UK | publisher=Cambridge University Press | isbn=0-521-81808-7 | date=2004 | page=45 | chapter-url=https://books.google.com/books?id=aMERHqj9ivcC&pg=PA45 | access-date=March 19, 2023 | archive-date=March 26, 2023 | archive-url=https://web.archive.org/web/20230326164803/https://books.google.com/books?id=aMERHqj9ivcC&pg=PA45 | url-status=live }}</ref> === Atmosphere === {{Main|Atmosphere of Jupiter}} The atmosphere of Jupiter is primarily composed of molecular hydrogen and helium, with a smaller amount of other compounds such as water, methane, hydrogen sulfide, and ammonia.<ref name="Atreya2003"/> Jupiter's atmosphere extends to a depth of approximately {{convert|3000|km|-3}} below the cloud layers.<ref name="Guillot_et_al_2004"/> ==== Cloud layers ==== [[File:790106-0203 Voyager 58M to 31M reduced.gif|thumb|alt=Black and white animation of Jupiter's clouds by ''Voyager 1'' as the spacecraft approaches the planet|Timelapse of Jupiter's cloud system moving over the course of one month (photographed during ''[[Voyager 1]]'' flyby in 1979)]] Jupiter is perpetually covered with clouds of ammonia crystals, which may contain [[ammonium hydrosulfide]] as well.<ref>{{cite journal | title=Coloring Jupiter's clouds: Radiolysis of ammonium hydrosulfide (NH4SH) | last1=Loeffler | first1=Mark J. | last2=Hudson | first2=Reggie L. | journal=Icarus | volume=302 | pages=418–425 | date=March 2018 | doi=10.1016/j.icarus.2017.10.041 | bibcode=2018Icar..302..418L | url=https://science.gsfc.nasa.gov/691/cosmicice/reprints/NH4SH_Icarus_Loeffler_Hudson_2018.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://science.gsfc.nasa.gov/691/cosmicice/reprints/NH4SH_Icarus_Loeffler_Hudson_2018.pdf |archive-date=October 9, 2022 |url-status=live | access-date=April 25, 2022 }}</ref> The clouds are located in the [[tropopause]] layer of the atmosphere, forming bands at different latitudes, known as tropical regions. These are subdivided into lighter-hued ''zones'' and darker ''belts''. The interactions of these conflicting [[Atmospheric circulation|circulation]] patterns cause storms and [[turbulence]]. Wind speeds of {{convert|100|m/s|km/h mph}} are common in [[Jet stream#Other planets|zonal jet streams]].<ref>{{cite book | chapter=Dynamics of Jupiter's Atmosphere | last1=Ingersoll | first1=Andrew P. | author-link1=Andrew Ingersoll | last2=Dowling | first2=Timothy E. | last3=Gierasch | first3=Peter J. | last4=Orton | first4=Glenn S. | last5=Read | first5=Peter L. | last6=Sánchez-Lavega | first6=Agustin | last7=Showman | first7=Adam P. | last8=Simon-Miller | first8=Amy A. | last9=Vasavada | first9=Ashwin R. | title=Jupiter. The Planet, Satellites and Magnetosphere | editor1-first=Fran | editor1-last=Bagenal | editor2-first=Timothy E. | editor2-last=Dowling | editor3-first=William B. | editor3-last=McKinnon | series=Cambridge planetary science | volume=1 | publication-place=Cambridge, UK | publisher=Cambridge University Press | isbn=0-521-81808-7 | date=2004 | pages=105–128 | bibcode=2004jpsm.book..105I | url=https://authors.library.caltech.edu/36015/1/Ingersoll_p105.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://authors.library.caltech.edu/36015/1/Ingersoll_p105.pdf |archive-date=October 9, 2022 |url-status=live | access-date=March 8, 2022 }}</ref> The zones have been observed to vary in width, colour and intensity from year to year, but they have remained stable enough for scientists to name them.<ref name="burgess"/>{{rp|6}} The cloud layer is about {{cvt|50|km|0}} deep and consists of at least two decks of ammonia clouds: a thin, clearer region on top and a thicker, lower deck. There may be a thin layer of [[water (properties)|water]] clouds underlying the ammonia clouds, as suggested by flashes of [[lightning]] detected in the atmosphere of Jupiter.<ref>{{cite journal | title=Lightning Generation in Moist Convective Clouds and Constraints on the Water Abundance in Jupiter | last1=Aglyamov | first1=Yury S. | last2=Lunine | first2=Jonathan | last3=Becker | first3=Heidi N. |author3-link=Heidi N. Becker| last4=Guillot | first4=Tristan | last5=Gibbard | first5=Seran G. | last6=Atreya | first6=Sushil | last7=Bolton | first7=Scott J. | last8=Levin | first8=Steven | last9=Brown | first9=Shannon T. | last10=Wong | first10=Michael H. | journal=Journal of Geophysical Research: Planets | volume=126 | issue=2 | id=e06504 | date=February 2021 | doi=10.1029/2020JE006504 | arxiv=2101.12361 | bibcode=2021JGRE..12606504A | s2cid=231728590 }}</ref> These electrical discharges can be up to a thousand times as powerful as lightning on Earth.<ref>{{cite web |editor1-last=Watanabe |editor1-first=Susan |date=February 25, 2006 |url=http://www.nasa.gov/vision/universe/solarsystem/galileo_end.html |title=Surprising Jupiter: Busy Galileo spacecraft showed jovian system is full of surprises |publisher=NASA |access-date=February 20, 2007 |archive-date=October 8, 2011 |archive-url=https://web.archive.org/web/20111008010724/http://www.nasa.gov/vision/universe/solarsystem/galileo_end.html |url-status=dead }}</ref> The water clouds are assumed to generate thunderstorms in the same way as terrestrial thunderstorms, driven by the heat rising from the interior.<ref>{{cite journal |last=Kerr |first=Richard A. |author-link=Richard Kerr (science journalist) |title=Deep, Moist Heat Drives Jovian Weather |journal=Science |year=2000 |volume=287 |issue=5455 |pages=946–947 |doi=10.1126/science.287.5455.946b |s2cid=129284864 |url=https://www.proquest.com/openview/d4cfc37399ab62ac9e0668fd231cb072/1?pq-origsite=gscholar&cbl=1256 |access-date=April 26, 2022 |archive-date=February 3, 2023 |archive-url=https://web.archive.org/web/20230203043417/https://www.proquest.com/openview/d4cfc37399ab62ac9e0668fd231cb072/1?pq-origsite=gscholar&cbl=1256 |url-status=live }}</ref> The Juno mission revealed the presence of "shallow lightning" which originates from ammonia-water clouds relatively high in the atmosphere.<ref>{{cite journal | title=Small lightning flashes from shallow electrical storms on Jupiter | last1=Becker | first1=Heidi N. | author1-link=Heidi N. Becker | last2=Alexander | first2=James W. | last3=Atreya | first3=Sushil K. | last4=Bolton | first4=Scott J. | last5=Brennan | first5=Martin J. | last6=Brown | first6=Shannon T. | last7=Guillaume | first7=Alexandre | last8=Guillot | first8=Tristan | last9=Ingersoll | first9=Andrew P. | last10=Levin | first10=Steven M. | last11=Lunine | first11=Jonathan I. | last12=Aglyamov | first12=Yury S. | last13=Steffes | first13=Paul G. | journal=Nature | volume=584 | issue=7819 | pages=55–58 | year=2020 | doi=10.1038/s41586-020-2532-1 | pmid=32760043 | bibcode=2020Natur.584...55B | s2cid=220980694 | issn=0028-0836 | url=https://hal.archives-ouvertes.fr/hal-03058480 | access-date=March 6, 2021 | archive-date=September 29, 2021 | archive-url=https://web.archive.org/web/20210929074856/https://hal.archives-ouvertes.fr/hal-03058480 | url-status=live }}</ref> These discharges carry "mushballs" of water-ammonia slushes covered in ice, which fall deep into the atmosphere.<ref>{{cite journal | title=Storms and the Depletion of Ammonia in Jupiter: I. Microphysics of "Mushballs" | last1=Guillot | first1=Tristan | last2=Stevenson | first2=David J. | last3=Atreya | first3=Sushil K. | last4=Bolton | first4=Scott J. | last5=Becker | first5=Heidi N.|author5-link=Heidi N. Becker | journal=Journal of Geophysical Research: Planets | year=2020 | volume=125 | issue=8 | page=e2020JE006403 | doi=10.1029/2020JE006404 | arxiv=2012.14316 | bibcode=2020JGRE..12506403G | s2cid=226194362 }}</ref> [[Upper-atmospheric lightning]] has been observed in Jupiter's upper atmosphere, bright flashes of light that last around 1.4{{Nbsp}}milliseconds. These are known as "elves" or "sprites" and appear blue or pink due to the hydrogen.<ref>{{cite journal | title=Possible Transient Luminous Events Observed in Jupiter's Upper Atmosphere | last1=Giles | first1=Rohini S. | last2=Greathouse | first2=Thomas K. | last3=Bonfond | first3=Bertrand | last4=Gladstone | first4=G. Randall | last5=Kammer | first5=Joshua A. | last6=Hue | first6=Vincent | last7=Grodent | first7=Denis C. | last8=Gérard | first8=Jean-Claude | last9=Versteeg | first9=Maarten H. | last10=Wong | first10=Michael H. | last11=Bolton | first11=Scott J. | last12=Connerney | first12=John E. P. | last13=Levin | first13=Steven M. | journal=Journal of Geophysical Research: Planets | year=2020 | volume=125 | issue=11 | pages=e06659 | id=e06659 | doi=10.1029/2020JE006659 | arxiv=2010.13740 | bibcode=2020JGRE..12506659G | s2cid=225075904 }}</ref><ref>{{cite web | title=Juno Data Indicates 'Sprites' or 'Elves' Frolic in Jupiter's Atmosphere | date=October 27, 2020 | editor-first=Tony | editor-last=Greicius | website=NASA | url=https://www.nasa.gov/feature/jpl/juno-data-indicates-sprites-or-elves-frolic-in-jupiters-atmosphere | access-date=December 30, 2020 | archive-date=January 27, 2021 | archive-url=https://web.archive.org/web/20210127211238/https://www.nasa.gov/feature/jpl/juno-data-indicates-sprites-or-elves-frolic-in-jupiters-atmosphere/ | url-status=live }}</ref> The orange and brown colours in the clouds of Jupiter are caused by upwelling compounds that change colour when they are exposed to ultraviolet light from the Sun. The exact makeup remains uncertain, but the substances are thought to be made up of phosphorus, sulfur or possibly hydrocarbons.<ref name="elkins-tanton"/>{{rp|39}}<ref>{{cite conference | last1=Strycker | first1=P. D. | last2=Chanover | first2=N. | last3=Sussman | first3=M. | last4=Simon-Miller | first4=A. |title=A Spectroscopic Search for Jupiter's Chromophores |work=DPS meeting No. 38, #11.15 |publisher=American Astronomical Society |year=2006 |bibcode=2006DPS....38.1115S}}</ref> These colourful compounds, known as [[chromophore]]s, mix with the warmer clouds of the lower deck. The light-coloured zones are formed when rising [[convection cell]]s form crystallising ammonia that hides the chromophores from view.<ref name="worldbook">{{cite web | last1=Gierasch | first1=Peter J. | last2=Nicholson | first2=Philip D. |author-link2=Phil Nicholson|year=2004 | url=http://www.nasa.gov/worldbook/jupiter_worldbook.html |archive-url=https://web.archive.org/web/20050105155019/http://www.nasa.gov/worldbook/jupiter_worldbook.html | url-status=dead | archive-date=January 5, 2005 | title=Jupiter | publisher=World Book @ NASA | access-date=August 10, 2006 }}</ref> Jupiter has a low [[axial tilt]], thus ensuring that the poles always receive less [[solar radiation]] than the planet's equatorial region. [[Convection]] within the interior of the planet transports energy to the poles, balancing out temperatures at the cloud layer.<ref name="burgess"/>{{rp|54}} ==== Great Red Spot and other vortices ==== [[File:PIA21775.jpg|thumb|alt=A very distorted image of a large, red anticyclonic storm|Close-up of the Great Red Spot imaged by the [[Juno spacecraft|''Juno'' spacecraft]] in true colour. Due to the way ''Juno'' takes photographs, the stitched image has extreme [[barrel distortion]].]] A well-known feature of Jupiter is the [[Great Red Spot]],<ref name="NYT-20171213">{{cite news |last=Chang |first=Kenneth |title=The Great Red Spot Descends Deep into Jupiter |url=https://www.nytimes.com/2017/12/13/science/jupiter-great-red-spot-juno.html |date=December 13, 2017 |work=[[The New York Times]] |access-date=December 15, 2017 |archive-date=December 15, 2017 |archive-url=https://web.archive.org/web/20171215042159/https://www.nytimes.com/2017/12/13/science/jupiter-great-red-spot-juno.html |url-status=live }}</ref> a persistent [[anticyclonic storm]] located 22° south of the equator. It was first observed in 1831,<ref>{{cite journal |last=Denning |first=William F. |author-link=William Frederick Denning|title=Jupiter, early history of the great red spot on |journal=[[Monthly Notices of the Royal Astronomical Society]] |year=1899 |volume=59 |issue=10 |pages=574–584 |bibcode=1899MNRAS..59..574D |doi=10.1093/mnras/59.10.574|doi-access=free }}</ref> and possibly as early as 1665.<ref name="kyrala26">{{cite journal |last=Kyrala |first=A. |title=An explanation of the persistence of the Great Red Spot of Jupiter |journal=Moon and the Planets |year=1982 |volume=26 |issue=1 |pages=105–107 |bibcode=1982M&P....26..105K |doi=10.1007/BF00941374|s2cid=121637752 }}</ref><ref>{{cite web | url=http://www.gutenberg.org/files/28758/28758-h/28758-h.htm | title=Philosophical Transactions of the Royal Society | editor-first=Henry | editor-last=Oldenburg | volume=1 | date=1665–1666 | publisher=Project Gutenberg | access-date=December 22, 2011 | archive-date=March 4, 2016 | archive-url=https://web.archive.org/web/20160304001941/http://www.gutenberg.org/files/28758/28758-h/28758-h.htm | url-status=live }}</ref> Images by the [[Hubble Space Telescope]] have shown two more "red spots" adjacent to the Great Red Spot.<ref>{{cite web|title=New Red Spot Appears on Jupiter|url=http://hubblesite.org/newscenter/archive/releases/2008/23/image/a/|last1=Wong|first1=M.|last2=de Pater|first2=I.|website=HubbleSite|publisher=[[NASA]]|date=May 22, 2008|access-date=December 12, 2013|archive-date=December 16, 2013|archive-url=https://web.archive.org/web/20131216055125/http://hubblesite.org/newscenter/archive/releases/2008/23/image/a/|url-status=live}}</ref><ref>{{cite web|title=Three Red Spots Mix It Up on Jupiter|url=http://hubblesite.org/newscenter/archive/releases/2008/27/image/a/|last1=Simon-Miller|first1=A.|last2=Chanover|first2=N.|last3=Orton|first3=G.|website=HubbleSite|publisher=[[NASA]]|date=July 17, 2008|access-date=April 26, 2015|archive-date=May 1, 2015|archive-url=https://web.archive.org/web/20150501093610/http://hubblesite.org/newscenter/archive/releases/2008/27/image/a/|url-status=live}}</ref> The storm is visible through Earth-based [[telescope]]s with an [[aperture]] of 12 cm or larger.<ref>{{cite book |first=Michael A. |last=Covington |date=2002 |title=Celestial Objects for Modern Telescopes |page=[https://archive.org/details/celestialobjects00covi/page/53 53] |publisher=Cambridge University Press |isbn=978-0-521-52419-3 |url=https://archive.org/details/celestialobjects00covi/page/53 }}</ref> The storm rotates counterclockwise, with a [[period (physics)|period]] of about six days.<ref>{{cite web | last1=Cardall | first1=C. Y. | last2=Daunt | first2=S. J. | url=http://csep10.phys.utk.edu/astr161/lect/jupiter/redspot.html | title=The Great Red Spot | publisher=University of Tennessee | access-date=February 2, 2007 | archive-date=March 31, 2010 | archive-url=https://web.archive.org/web/20100331125637/http://csep10.phys.utk.edu/astr161/lect/jupiter/redspot.html | url-status=live }}</ref> The maximum altitude of this storm is about {{convert|8|km|0}} above the surrounding cloud tops.<ref>{{cite book | title=Jupiter, the Giant of the Solar System | page=5 | publisher=NASA | date=1979 | url=https://books.google.com/books?id=KuBYXLt4K9MC&pg=PA5 | access-date=March 19, 2023 | archive-date=March 26, 2023 | archive-url=https://web.archive.org/web/20230326164803/https://books.google.com/books?id=KuBYXLt4K9MC&pg=PA5 | url-status=live }}</ref> The Spot's composition and the source of its red colour remain uncertain, although photodissociated [[ammonia]] reacting with [[acetylene]] is a likely explanation.<ref>{{cite journal | title=A possibly universal red chromophore for modeling colour variations on Jupiter | last1=Sromovsky | first1=L. A. | last2=Baines | first2=K. H. | last3=Fry | first3=P. M. | last4=Carlson | first4=R. W. | journal=Icarus | volume=291 | pages=232–244 | date=July 2017 | doi=10.1016/j.icarus.2016.12.014 | arxiv=1706.02779 | bibcode=2017Icar..291..232S | s2cid=119036239 }}</ref> The Great Red Spot is larger than the Earth.<ref name="sp.news20151125">{{cite news |url=http://space.news/2015-11-25-is-jupiters-great-red-spot-nearing-its-twilight.html |title=Is Jupiter's Great Red Spot nearing its twilight? |work=Space.news |first=Greg |last=White |date=November 25, 2015 |access-date=April 13, 2017 |archive-date=April 14, 2017 |archive-url=https://web.archive.org/web/20170414082402/http://space.news/2015-11-25-is-jupiters-great-red-spot-nearing-its-twilight.html |url-status=live }}</ref> [[Mathematical model]]s suggest that the storm is stable and will be a permanent feature of the planet.<ref>{{cite journal |title=Laboratory simulation of Jupiter's Great Red Spot |first1=Jöel |last1=Sommeria |first2=Steven D. |last2=Meyers |first3=Harry L. |last3=Swinney |journal=Nature |volume=331 |issue=6158 |pages=689–693 |date=February 25, 1988 |doi=10.1038/331689a0 |bibcode=1988Natur.331..689S|s2cid=39201626 }}</ref> However, it has significantly decreased in size since its discovery. Initial observations in the late 1800s showed it to be approximately {{cvt|25500|mi|km|order=flip}} across. {{As of|2015}}, the storm was measured at approximately {{convert|10250|by|6800|mi|km|order=flip}},<ref name="Simon2015">{{cite conference |title=Dramatic Change in Jupiter's Great Red Spot |conference=46th Lunar and Planetary Science Conference. March 16–20, 2015. The Woodlands, Texas. |first1=Amy A. |last1=Simon | last2=Wong | first2=M. H. | last3=Rogers | first3=J. H. | last4=Orton | first4=G. S. | last5=de Pater | first5=I. | last6=Asay-Davis | first6=X. | last7=Carlson | first7=R. W. | last8=Marcus | first8=P. S. | date=March 2015 |bibcode=2015LPI....46.1010S}}</ref> and was decreasing in length by about {{cvt|580|mi|km|order=flip}} per year.<ref name="sp.news20151125"/> In October 2021, a ''Juno'' flyby mission measured the depth of the Great Red Spot, putting it at around {{convert|300|-|500|km}}.<ref>{{Cite web|last=Grush|first=Loren|date=October 28, 2021|title=NASA's ''Juno'' spacecraft finds just how deep Jupiter's Great Red Spot goes|url=https://www.theverge.com/2021/10/28/22749095/nasa-juno-jupiter-great-red-spot-depth|access-date=October 28, 2021|website=The Verge|language=en|archive-date=October 28, 2021|archive-url=https://web.archive.org/web/20211028212214/https://www.theverge.com/2021/10/28/22749095/nasa-juno-jupiter-great-red-spot-depth|url-status=live}}</ref> ''Juno'' missions found several cyclone groups at Jupiter's poles. The northern group contains nine cyclones, with a large one in the centre and eight others around it, while its southern counterpart also consists of a centre vortex but is surrounded by five large storms and a single smaller one for a total of seven storms.<ref name=Adriani_et_al_2018>{{cite journal| title=Clusters of cyclones encircling Jupiter's poles| last1=Adriani | first1=Alberto | last2=Mura | first2=A. | last3=Orton | first3=G. | last4=Hansen | first4=C. | last5=Altieri | first5=F. | last6=Moriconi | first6=M. L. | last7=Rogers | first7=J. | last8=Eichstädt | first8=G. | last9=Momary | first9=T. | last10=Ingersoll | first10=A. P. | last11=Filacchione | first11=G. | last12=Sindoni | first12=G. | last13=Tabataba-Vakili | first13=F. | last14=Dinelli | first14=B. M. | last15=Fabiano | first15=F. | last16=Bolton | first16=S. J. | last17=Connerney | first17=J. E. P. | last18=Atreya | first18=S. K. | last19=Lunine | first19=J. I. | last20=Tosi | first20=F. | last21=Migliorini | first21=A. | last22=Grassi | first22=D. | last23=Piccioni | first23=G. | last24=Noschese | first24=R. | last25=Cicchetti | first25=A. | last26=Plainaki | first26=C. | last27=Olivieri | first27=A. | last28=O'Neill | first28=M. E. | last29=Turrini | first29=D. | last30=Stefani | first30=S. | last31=Sordini | first31=R. | last32=Amoroso | first32=M. | display-authors=5 | journal=Nature |volume=555 |issue=7695 |pages=216–219|date=March 2018 |doi=10.1038/nature25491 |pmid=29516997 | bibcode=2018Natur.555..216A| s2cid=4438233 }}</ref><ref>{{cite web| title=NASA Just Watched a Mass of Cyclones on Jupiter Evolve Into a Mesmerising Hexagon| url=https://www.sciencealert.com/june-watched-a-pentagon-of-storms-on-jupiter-evolve-into-a-hexagon| last=Starr| first=Michelle| date=December 13, 2017| website=Science Alert| access-date=May 26, 2021| archive-date=May 26, 2021| archive-url=https://web.archive.org/web/20210526205728/https://www.sciencealert.com/june-watched-a-pentagon-of-storms-on-jupiter-evolve-into-a-hexagon| url-status=live}}</ref> In 2000, an atmospheric feature formed in the southern hemisphere that is similar in appearance to the Great Red Spot, but smaller. This was created when smaller, white oval-shaped storms merged to form a single feature—these three smaller white ovals were formed in 1939–1940. The merged feature was named [[Oval BA]]. It has since increased in intensity and changed from white to red, earning it the nickname "Little Red Spot".<ref>{{cite web |first=Bill |last=Steigerwald |date=October 14, 2006 |url=http://www.nasa.gov/centers/goddard/news/topstory/2006/little_red_spot.html |title=Jupiter's Little Red Spot Growing Stronger |publisher=NASA |access-date=February 2, 2007 |archive-date=April 5, 2012 |archive-url=https://web.archive.org/web/20120405155701/http://www.nasa.gov/centers/goddard/news/topstory/2006/little_red_spot.html |url-status=live }}</ref><ref>{{cite journal | title=Vertical structure of Jupiter's Oval BA before and after it reddened: What changed? | last1=Wong | first1=Michael H. | last2=de Pater | first2=Imke | last3=Asay-Davis | first3=Xylar | last4=Marcus | first4=Philip S. | last5=Go | first5=Christopher Y. | journal=Icarus | volume=215 | issue=1 |pages=211–225 | date=September 2011 | doi=10.1016/j.icarus.2011.06.032 | bibcode=2011Icar..215..211W | url=http://cfd.me.berkeley.edu/wp-content/uploads/2011/08/wong-publlished-1.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://cfd.me.berkeley.edu/wp-content/uploads/2011/08/wong-publlished-1.pdf |archive-date=October 9, 2022 |url-status=live | access-date=April 27, 2022 }}</ref> In April 2017, a "Great Cold Spot" was discovered in Jupiter's thermosphere at its [[Jupiter's North Pole|north pole]]. This feature is {{cvt|24000|km}} across, {{cvt|12000|km}} wide, and {{convert|200|C-change}} cooler than surrounding material. While this spot changes form and intensity over the short term, it has maintained its general position in the atmosphere for more than 15 years. It may be a giant [[vortex]] similar to the Great Red Spot, and appears to be [[Metastability|quasi-stable]] like the [[Vorticity|vortices]] in Earth's thermosphere. This feature may be formed by interactions between charged particles generated from Io and the strong magnetic field of Jupiter, resulting in a redistribution of heat flow.<ref name="Stallard et Al., 2017">{{cite journal |last1=Stallard |first1=Tom S. |last2=Melin |first2=Henrik |last3=Miller |first3=Steve |last4=Moore |first4=Luke |last5=O'Donoghue |first5=James |last6=Connerney |first6=John E. P. |last7=Satoh |first7=Takehiko |last8=West |first8=Robert A. |last9=Thayer |first9=Jeffrey P. |last10=Hsu |first10=Vicki W. |last11=Johnson |first11=Rosie E. |date=April 10, 2017 |title=The Great Cold Spot in Jupiter's upper atmosphere |journal=Geophysical Research Letters |volume=44 |issue=7 |pages=3000–3008 |bibcode=2017GeoRL..44.3000S |doi=10.1002/2016GL071956 |pmc=5439487 |pmid=28603321}}</ref> === Magnetosphere === {{Main|Magnetosphere of Jupiter}} [[File:Jupiter's magnetosphere in the vicinity of the Galilean satellites.jpg|thumb|upright=1.5|The [[Galilean moons]]'s affect on Jupiter's magnetosphere]] Jupiter's [[magnetic field]] is the strongest of any planet in the Solar System,<ref name="worldbook"/> with a [[magnetic dipole moment|dipole moment]] of {{convert|4.170|G|mT|lk=on}} that is tilted at an angle of 10.31° to the pole of rotation. The surface magnetic field strength varies from {{convert|2|G|mT}} up to {{convert|20|G|mT}}.<ref>{{Cite journal |last1=Connerney |first1=J. E. P. |last2=Kotsiaros |first2=S. |last3=Oliversen |first3=R. J. |last4=Espley |first4=J. R. |last5=Joergensen |first5=J. L. |last6=Joergensen |first6=P. S. |last7=Merayo |first7=J. M. G. |last8=Herceg |first8=M. |last9=Bloxham |first9=J. |last10=Moore |first10=K. M. |last11=Bolton |first11=S. J. |last12=Levin |first12=S. M. |date=May 26, 2017 |title=A New Model of Jupiter's Magnetic Field From Juno's First Nine Orbits |url=http://orbit.dtu.dk/ws/files/147221632/Connerney_et_al_2018_Geophysical_Research_Letters.pdf |url-status=live |journal=Geophysical Research Letters |language=en |volume=45 |issue=6 |pages=2590–2596 |bibcode=2018GeoRL..45.2590C |doi=10.1002/2018GL077312 |archive-url=https://ghostarchive.org/archive/20221009/http://orbit.dtu.dk/ws/files/147221632/Connerney_et_al_2018_Geophysical_Research_Letters.pdf |archive-date=October 9, 2022 |doi-access=free}}</ref> This field is thought to be generated by [[eddy current]]s—swirling movements of conducting materials—within the fluid, metallic hydrogen core. At about 75 Jupiter radii from the planet, the interaction of the magnetosphere with the [[solar wind]] generates a [[bow shock]]. Surrounding Jupiter's magnetosphere is a [[magnetopause]], located at the inner edge of a [[magnetosheath]]—a region between it and the bow shock. The solar wind interacts with these regions, elongating the magnetosphere on Jupiter's [[lee side]] and extending it outward until it nearly reaches the orbit of Saturn. The four largest moons of Jupiter all orbit within the magnetosphere, which protects them from solar wind.<ref name="elkins-tanton"/>{{rp|69}} The volcanoes on the moon [[Io (moon)|Io]] emit large amounts of [[sulfur dioxide]], forming a gas [[torus]] along its orbit. The gas is [[Ionization|ionized]] in Jupiter's [[magnetosphere]], producing sulfur and oxygen [[ion]]s. They, together with hydrogen ions originating from the atmosphere of Jupiter, form a [[plasma sheet]] in Jupiter's equatorial plane. The plasma in the sheet co-rotates with the planet, causing deformation of the dipole magnetic field into that of a magnetodisk. Electrons within the plasma sheet generate a strong radio signature, with short, superimposed bursts in the range of 0.6–30 [[hertz|MHz]] that are detectable from Earth with consumer-grade [[shortwave radio receiver]]s.<ref>{{cite news |last=Brainerd |first=Jim |date=November 22, 2004 |title=Jupiter's Magnetosphere |work=The Astrophysics Spectator |url=http://www.astrophysicsspectator.com/topics/planets/JupiterMagnetosphere.html |access-date=August 10, 2008 |archive-date=January 25, 2021 |archive-url=https://web.archive.org/web/20210125004606/https://www.astrophysicsspectator.com/topics/planets/JupiterMagnetosphere.html}}</ref><ref>{{cite web |url=https://radiojove.gsfc.nasa.gov/telescope/rj_receivers.htm |website=NASA |title=Receivers for Radio JOVE |date=March 1, 2017 |access-date=September 9, 2020 |archive-date=January 26, 2021 |archive-url=https://web.archive.org/web/20210126034939/https://radiojove.gsfc.nasa.gov/telescope/rj_receivers.htm |url-status=dead}}</ref> As Io moves through this torus, the interaction generates [[Alfvén wave]]s that carry ionized matter into the polar regions of Jupiter. As a result, radio waves are generated through a [[cyclotron]] [[Astrophysical maser|maser mechanism]], and the energy is transmitted out along a cone-shaped surface. When Earth intersects this cone, the [[Radio wave|radio emissions]] from Jupiter can exceed the radio output of the Sun.<ref>{{cite web |date=February 20, 2004 |url=https://science.nasa.gov/headlines/y2004/20feb_radiostorms.htm |title=Radio Storms on Jupiter |last1=Phillips |first1=Tony |last2=Horack |first2=John M. |website=NASA |access-date=February 1, 2007 |url-status=dead |archive-url=https://web.archive.org/web/20070213220639/https://science.nasa.gov/headlines/y2004/20feb_radiostorms.htm |archive-date=February 13, 2007}}</ref> === Planetary rings === {{Main|Rings of Jupiter}} [[File:Jupiter Showcases Auroras, Hazes (NIRCam Widefield View) (jupiter-auroras2).jpeg|thumb|alt=Image of Jupiter showing its faint rings, two small moons, auroras, and atmospheric features.|Jupiter, taken in [[infrared]] light, showing its faint rings, along with two moons – [[Amalthea (moon)|Amalthea]] and [[Adrastea (moon)|Adrastea]], auroras, and atmospheric features. ]] Jupiter has a faint [[planetary ring]] system composed of three main segments: an inner [[torus]] of particles known as the halo, a relatively bright main ring, and an outer gossamer ring.<ref>{{cite journal |last1=Showalter |first1=M. A. |last2=Burns |first2=J. A. |last3=Cuzzi |first3=J. N. |last4=Pollack |first4=J. B. |year=1987 |title=Jupiter's ring system: New results on structure and particle properties |journal=Icarus |volume=69 |issue=3 |pages=458–498 |bibcode=1987Icar...69..458S |doi=10.1016/0019-1035(87)90018-2}}</ref> These rings appear to be made of dust, whereas Saturn's rings are made of ice.<ref name="elkins-tanton"/>{{rp|65}} The main ring is most likely made out of material ejected from the satellites [[Adrastea (moon)|Adrastea]] and [[Metis (moon)|Metis]], which is drawn into Jupiter because of the planet's strong gravitational influence. New material is added by additional impacts.<ref name="Burns1999">{{cite journal |last1=Burns |first1=J. A. |last2=Showalter |first2=M. R. |last3=Hamilton |first3=D. P. |last4=Nicholson |first4=P. D. |last5=de Pater |first5=I. |last6=Ockert-Bell |first6=M. E. |last7=Thomas |first7=P. C. |year=1999 |title=The Formation of Jupiter's Faint Rings |journal=Science |volume=284 |issue=5417 |pages=1146–1150 |bibcode=1999Sci...284.1146B |doi=10.1126/science.284.5417.1146 |pmid=10325220 |s2cid=21272762}}</ref> In a similar way, the moons [[Thebe (moon)|Thebe]] and [[Amalthea (moon)|Amalthea]] are believed to produce the two distinct components of the dusty gossamer ring.<ref name="Burns1999"/> There is evidence of a fourth ring that may consist of collisional debris from Amalthea that is strung along the same moon's orbit.<ref>{{cite journal |last1=Fieseler |first1=P. D. |last2=Adams |first2=O. W. |last3=Vandermey |first3=N. |last4=Theilig |first4=E. E. |last5=Schimmels |first5=K. A. |last6=Lewis |first6=G. D. |last7=Ardalan |first7=S. M. |last8=Alexander |first8=C. J. |year=2004 |title=The Galileo Star Scanner Observations at Amalthea |journal=Icarus |volume=169 |issue=2 |pages=390–401 |bibcode=2004Icar..169..390F |doi=10.1016/j.icarus.2004.01.012}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)