Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Kernel (algebra)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Ring homomorphisms === {{Ring theory sidebar}} Let ''R'' and ''S'' be [[ring (mathematics)|ring]]s (assumed [[unital algebra|unital]]) and let ''f'' be a [[ring homomorphism]] from ''R'' to ''S''. If 0<sub>''S''</sub> is the [[zero element]] of ''S'', then the ''kernel'' of ''f'' is its kernel as additive groups.<ref>{{harvnb|Fraleigh|Katz|2003|p=238}}</ref> It is the preimage of the [[zero ideal]] {{mset|0<sub>''S''</sub>}}, which is, the subset of ''R'' consisting of all those elements of ''R'' that are mapped by ''f'' to the element 0<sub>''S''</sub>. The kernel is usually denoted {{nowrap|ker ''f''}} (or a variation). In symbols: : <math> \operatorname{ker} f = \{r \in R : f(r) = 0_{S}\} .</math> Since a ring homomorphism preserves zero elements, the zero element 0<sub>''R''</sub> of ''R'' must belong to the kernel. The homomorphism ''f'' is injective if and only if its kernel is only the singleton set {{mset|0<sub>''R''</sub>}}. This is always the case if ''R'' is a [[field (mathematics)|field]], and ''S'' is not the [[zero ring]].<ref name="Dummit Ring Kernels and Ideals"/> Since ker ''f'' contains the multiplicative identity only when ''S'' is the zero ring, it turns out that the kernel is generally not a [[subring]] of ''R.'' The kernel is a sub[[rng (algebra)|rng]], and, more precisely, a two-sided [[ideal (ring theory)|ideal]] of ''R''. Thus, it makes sense to speak of the [[quotient ring]] {{nowrap|''R'' / (ker ''f'')}}. The first isomorphism theorem for rings states that this quotient ring is naturally isomorphic to the image of ''f'' (which is a subring of ''S'').<ref name="Dummit Ring Kernels and Ideals"/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)