Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Knuth's up-arrow notation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Writing out up-arrow notation in terms of powers=== Attempting to write <math>a \uparrow \uparrow b</math> using the familiar superscript notation gives a [[tetration|power tower]]. :For example: <math>a \uparrow \uparrow 4 = a \uparrow (a \uparrow (a \uparrow a)) = a^{a^{a^a}}</math> If <math>b</math> is a variable (or is too large), the power tower might be written using dots and a note indicating the height of the tower. :<math>a \uparrow \uparrow b = {} \underbrace{a^{a^{.^{.^{.{a}}}}}}_{b}</math> Continuing with this notation, <math>a \uparrow \uparrow \uparrow b</math> could be written with a stack of such power towers, each describing the size of the one above it. :<math>a \uparrow \uparrow \uparrow 4 = a \uparrow \uparrow (a \uparrow \uparrow (a \uparrow \uparrow a)) = \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{a^{a^{.^{.^{.{a}}}}}}_{a} }}</math> Again, if <math>b</math> is a variable or is too large, the stack might be written using dots and a note indicating its height. :<math>a \uparrow \uparrow \uparrow b = \left. \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{\vdots}_{a} }} \right\} b</math> Furthermore, <math>a \uparrow \uparrow \uparrow \uparrow b</math> might be written using several columns of such stacks of power towers, each column describing the number of power towers in the stack to its left: :<math>a \uparrow \uparrow \uparrow \uparrow 4 = a \uparrow \uparrow \uparrow (a \uparrow \uparrow \uparrow (a \uparrow \uparrow \uparrow a)) = \left.\left.\left. \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{\vdots}_{a} }} \right\} \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{\vdots}_{a} }} \right\} \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{\vdots}_{a} }} \right\} a</math> And more generally: :<math>a \uparrow \uparrow \uparrow \uparrow b = \underbrace{ \left.\left.\left. \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{\vdots}_{a} }} \right\} \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{\vdots}_{a} }} \right\} \cdots \right\} a }_{b}</math> This might be carried out indefinitely to represent <math>a \uparrow^n b</math> as iterated exponentiation of iterated exponentiation for any <math>a</math>, <math>n</math>, and <math>b</math> (although it clearly becomes rather cumbersome). ====Using tetration==== The Rudy Rucker notation <math>^{b}a</math> for [[tetration]] allows us to make these diagrams slightly simpler while still employing a geometric representation (we could call these ''tetration towers''). : <math> a \uparrow \uparrow b = { }^{b}a</math> : <math> a \uparrow \uparrow \uparrow b = \underbrace{^{^{^{^{^{a}.}.}.}a}a}_{b}</math> : <math> a \uparrow \uparrow \uparrow \uparrow b = \left. \underbrace{^{^{^{^{^{a}.}.}.}a}a}_{ \underbrace{^{^{^{^{^{a}.}.}.}a}a}_{ \underbrace{\vdots}_{a} }} \right\} b</math> Finally, as an example, the fourth Ackermann number <math>4 \uparrow^4 4</math> could be represented as: : <math>\underbrace{^{^{^{^{^{4}.}.}.}4}4}_{ \underbrace{^{^{^{^{^{4}.}.}.}4}4}_{ \underbrace{^{^{^{^{^{4}.}.}.}4}4}_{4} }} = \underbrace{^{^{^{^{^{4}.}.}.}4}4}_{ \underbrace{^{^{^{^{^{4}.}.}.}4}4}_{ ^{^{^{4}4}4}4 }}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)