Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Kripke–Platek set theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Comparison with Zermelo-Fraenkel set theory === As noted, the above are weaker than ZFC as they exclude the [[power set axiom]], choice, and sometimes infinity. Also the axioms of separation and collection here are weaker than the corresponding axioms in ZFC because the formulas φ used in these are limited to bounded quantifiers only. The axiom of induction in the context of KP is stronger than the usual [[axiom of regularity]], which amounts to applying induction to the complement of a set (the class of all sets not in the given set).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)