Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ladder paradox
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Shutting the ladder in the garage== [[File:ladder paradox contraction.svg|thumb|left|143px|Figure 7: A ladder contracting under acceleration to fit into a length contracted garage]] In a more complicated version of the paradox, we can physically trap the ladder once it is fully inside the garage. This could be done, for instance, by not opening the exit door again after we close it. In the frame of the garage, we assume the exit door is immovable, and so when the ladder hits it, we say that it instantaneously stops.<ref name="lengthcontraction" /><ref>Rindler describes a rod that experiences simultaneous acceleration</ref> By this time, the entrance door has also closed, and so the ladder is stuck inside the garage. As its relative velocity is now zero, it is not length contracted, and is now longer than the garage; it will have to bend, snap, or explode. Again, the puzzle comes from considering the situation from the frame of the ladder. In the above analysis, in its own frame, the ladder was always longer than the garage. So how did we ever close the doors and trap it inside? It is worth noting here a general feature of relativity: we have deduced, by considering the frame of the garage, that we do indeed trap the ladder inside the garage. This must therefore be true in any frame - it cannot be the case that the ladder snaps in one frame but not in another. From the ladder's frame, then, we know that there must be some explanation for how the ladder came to be trapped; we must simply find the explanation. The explanation is that, although all parts of the ladder simultaneously decelerate to zero in the garage's frame, because simultaneity is relative, the corresponding decelerations in the frame of the ladder are not simultaneous. Instead, each part of the ladder decelerates sequentially,<ref name="lengthcontraction" /><ref>Rindler describes the rod undergoing sequential acceleration.</ref> from front to back, until finally the back of the ladder decelerates, by which time it is already within the garage. As length contraction and time dilation are both controlled by the [[Lorentz transformation]]s, the ladder paradox can be seen as a physical correlate of the [[twin paradox]], in which instance one of a set of twins leaves earth, travels at speed for a period, and returns to earth a bit younger than the earthbound twin. As in the case of the ladder trapped inside the barn, if neither frame of reference is privileged β each is moving only relative to the other β how can it be that it's the traveling twin and not the stationary one who is younger (just as it's the ladder rather than the barn which is shorter)? In both instances it is the acceleration-deceleration that differentiates the phenomena: it's the twin, not the earth (or the ladder, not the barn) that undergoes the force of deceleration in returning to the temporal (or physical, in the case of the ladder-barn) inertial frame. [[File:junk2.png|frame|center|Figure 8: A Minkowski diagram of the case where the ladder is stopped all along its length, simultaneously in the garage frame. When this occurs, the garage frame sees the ladder as AB, but the ladder frame sees the ladder as AC. When the back of the ladder enters the garage at point D, it has not yet felt the effects of the acceleration of its front end. At this time, according to someone at rest with respect to the back of the ladder, the front of the ladder will be at point E and will see the ladder as DE. It is seen that this length in the ladder frame is not the same as CA, the rest length of the ladder before the deceleration.]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)