Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lagrange inversion theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Applications== ===Lagrange–Bürmann formula=== There is a special case of Lagrange inversion theorem that is used in [[combinatorics]] and applies when <math>f(w)=w/\phi(w)</math> for some analytic <math>\phi(w)</math> with <math>\phi(0)\ne 0.</math> Take <math>a=0</math> to obtain <math>f(a)=f(0)=0.</math> Then for the inverse <math>g(z)</math> (satisfying <math>f(g(z))\equiv z</math>), we have :<math>\begin{align} g(z) &= \sum_{n=1}^{\infty} \left[ \lim_{w \to 0} \frac {d^{n-1}}{dw^{n-1}} \left(\left( \frac{w}{w/\phi(w)} \right)^n \right)\right] \frac{z^n}{n!} \\ {} &= \sum_{n=1}^{\infty} \frac{1}{n} \left[\frac{1}{(n-1)!} \lim_{w \to 0} \frac{d^{n-1}}{dw^{n-1}} (\phi(w)^n) \right] z^n, \end{align}</math> which can be written alternatively as :<math>[z^n] g(z) = \frac{1}{n} [w^{n-1}] \phi(w)^n,</math> where <math>[w^r]</math> is an operator which extracts the coefficient of <math>w^r</math> in the Taylor series of a function of {{mvar|w}}. A generalization of the formula is known as the '''Lagrange–Bürmann formula''': :<math>[z^n] H (g(z)) = \frac{1}{n} [w^{n-1}] (H' (w) \phi(w)^n)</math> where {{math|''H''}} is an arbitrary analytic function. Sometimes, the derivative {{math|''{{prime|H}}''(''w'')}} can be quite complicated. A simpler version of the formula replaces {{math|''{{prime|H}}''(''w'')}} with {{math|''H''(''w'')(1 − ''{{prime|φ}}''(''w'')/''φ''(''w''))}} to get :<math> [z^n] H (g(z)) = [w^n] H(w) \phi(w)^{n-1} (\phi(w) - w \phi'(w)), </math> which involves {{math|''{{prime|φ}}''(''w'')}} instead of {{math|''{{prime|H}}''(''w'')}}. ===Lambert ''W'' function=== {{main|Lambert W function}} The Lambert {{mvar|W}} function is the function <math>W(z)</math> that is implicitly defined by the equation :<math> W(z) e^{W(z)} = z.</math> We may use the theorem to compute the [[Taylor series]] of <math>W(z)</math> at <math>z=0.</math> We take <math>f(w) = we^w</math> and <math>a = 0.</math> Recognizing that :<math>\frac{d^n}{dx^n} e^{\alpha x} = \alpha^n e^{\alpha x},</math> this gives :<math>\begin{align} W(z) &= \sum_{n=1}^{\infty} \left[\lim_{w \to 0} \frac{d^{n-1}}{dw^{n-1}} e^{-nw} \right] \frac{z^n}{n!} \\ {} &= \sum_{n=1}^{\infty} (-n)^{n-1} \frac{z^n}{n!} \\ {} &= z-z^2+\frac{3}{2}z^3-\frac{8}{3}z^4+O(z^5). \end{align}</math> The [[radius of convergence]] of this series is <math>e^{-1}</math> (giving the [[principal branch]] of the Lambert function). A series that converges for <math>|\ln(z)-1|<\sqrt{{4+\pi^2}}</math> (approximately <math>0.0655 < z < 112.63</math>) can also be derived by series inversion. The function <math>f(z) = W(e^z) - 1</math> satisfies the equation :<math>1 + f(z) + \ln (1 + f(z)) = z.</math> Then <math>z + \ln (1 + z)</math> can be expanded into a power series and inverted.<ref>{{cite conference |url=https://dl.acm.org/doi/pdf/10.1145/258726.258783 |title=A sequence of series for the Lambert W function |last1=Corless |first1=Robert M. |last2=Jeffrey |first2= David J.|author-link2=|last3=Knuth|first3=Donald E.|author-link3=Donald E. Knuth|date=July 1997 |book-title=Proceedings of the 1997 international symposium on Symbolic and algebraic computation |pages=197–204|doi=10.1145/258726.258783 |url-access=subscription }}</ref> This gives a series for <math>f(z+1) = W(e^{z+1})-1\text{:}</math> :<math>W(e^{1+z}) = 1 + \frac{z}{2} + \frac{z^2}{16} - \frac{z^3}{192} - \frac{z^4}{3072} + \frac{13 z^5}{61440} - O(z^6).</math> <math>W(x)</math> can be computed by substituting <math>\ln x - 1</math> for {{mvar|z}} in the above series. For example, substituting {{math|−1}} for {{mvar|z}} gives the value of <math>W(1) \approx 0.567143.</math> ===Binary trees=== Consider<ref>{{cite book |last1=Harris|first1= John |last2=Hirst |first2= Jeffry L.| last3= Mossinghoff| first3= Michael |date=2008 |title=Combinatorics and Graph Theory |publisher= Springer |pages=185–189 |isbn=978-0387797113}}</ref> the set <math>\mathcal{B}</math> of unlabelled [[binary tree]]s. An element of <math>\mathcal{B}</math> is either a leaf of size zero, or a root node with two subtrees. Denote by <math>B_n</math> the number of binary trees on <math>n</math> nodes. Removing the root splits a binary tree into two trees of smaller size. This yields the functional equation on the generating function <math>\textstyle B(z) = \sum_{n=0}^\infty B_n z^n\text{:}</math> :<math>B(z) = 1 + z B(z)^2.</math> Letting <math>C(z) = B(z) - 1</math>, one has thus <math>C(z) = z (C(z)+1)^2.</math> Applying the theorem with <math>\phi(w) = (w+1)^2</math> yields :<math> B_n = [z^n] C(z) = \frac{1}{n} [w^{n-1}] (w+1)^{2n} = \frac{1}{n} \binom{2n}{n-1} = \frac{1}{n+1} \binom{2n}{n}.</math> This shows that <math>B_n</math> is the {{mvar|n}}th [[Catalan number]]. === Asymptotic approximation of integrals=== In the Laplace–Erdelyi theorem that gives the asymptotic approximation for Laplace-type integrals, the function inversion is taken as a crucial step.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)