Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Laguerre polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Properties === * Laguerre functions are defined by [[confluent hypergeometric function]]s and Kummer's transformation as<ref>A&S p. 509</ref> <math display="block"> L_n^{(\alpha)}(x) := {n+ \alpha \choose n} M(-n,\alpha+1,x).</math> where <math display="inline">{n+ \alpha \choose n}</math> is a generalized [[binomial coefficient]]. When {{mvar|n}} is an integer the function reduces to a polynomial of degree {{mvar|n}}. It has the alternative expression<ref>A&S p. 510</ref> <math display="block">L_n^{(\alpha)}(x)= \frac {(-1)^n}{n!} U(-n,\alpha+1,x)</math> in terms of [[confluent hypergeometric function|Kummer's function of the second kind]]. * The closed form for these generalized Laguerre polynomials of degree {{mvar|n}} is<ref>A&S p. 775</ref> <math display="block"> L_n^{(\alpha)} (x) = \sum_{i=0}^n (-1)^i {n+\alpha \choose n-i} \frac{x^i}{i!} </math> derived by applying [[Leibniz rule (generalized product rule)|Leibniz's theorem for differentiation of a product]] to Rodrigues' formula. * Laguerre polynomials have a differential operator representation, much like the closely related Hermite polynomials. Namely, let <math>D = \frac{d}{dx}</math> and consider the differential operator <math>M=xD^2+(\alpha+1)D</math>. Then <math>\exp(-tM)x^n=(-1)^nt^nn!L^{(\alpha)}_n\left(\frac{x}{t}\right)</math>.{{citation needed|date=April 2023}} * The first few generalized Laguerre polynomials are: {| class="wikitable" style="margin:0.5em auto" |- ! width="20%"| ''n'' ! <math>L_n^{(\alpha)}(x)\,</math> |- | align="center" | 0 | <math>1\,</math> |- | align="center" | 1 | <math>-x+\alpha +1\,</math> |- | align="center" | 2 | <math> \tfrac{1}{2} (x^2-2\left( \alpha +2 \right) x+\left( \alpha +1 \right) \left( \alpha +2 \right)) \,</math> |- | align="center" | 3 | <math>\tfrac{1}{6} (-x^3+3\left( \alpha +3 \right) x^2-3\left( \alpha +2 \right) \left( \alpha +3 \right) x+\left( \alpha +1 \right) \left( \alpha +2 \right) \left( \alpha +3 \right)) \,</math> |- | align="center" | 4 | <math>\tfrac{1}{24} (x^4-4\left( \alpha +4 \right) x^3+6\left( \alpha +3 \right) \left( \alpha +4 \right) x^2-4\left( \alpha +2 \right) \cdots \left( \alpha +4 \right) x+\left( \alpha +1 \right) \cdots \left( \alpha +4 \right)) \,</math> |- | align="center" | 5 | <math>\tfrac{1}{120} (-x^5+5\left( \alpha +5 \right) x^4-10\left( \alpha +4 \right) \left( \alpha +5 \right) x^3+10\left( \alpha +3 \right) \cdots \left( \alpha +5 \right) x^2-5\left( \alpha +2 \right) \cdots \left( \alpha +5 \right) x+\left( \alpha +1 \right) \cdots \left( \alpha +5 \right)) \,</math> |- | align="center" | 6 | <math>\tfrac{1}{720} (x^6-6\left( \alpha +6 \right) x^5+15\left( \alpha +5 \right) \left( \alpha +6 \right) x^4-20\left( \alpha +4 \right) \cdots \left( \alpha +6 \right) x^3+15\left( \alpha +3 \right) \cdots \left( \alpha +6 \right) x^2-6\left( \alpha +2 \right) \cdots \left( \alpha +6 \right) x+\left( \alpha +1 \right) \cdots \left( \alpha +6 \right)) \,</math> |- | align="center" | 7 | <math>\tfrac{1}{5040} (-x^7+7\left( \alpha +7 \right) x^6-21\left( \alpha +6 \right) \left( \alpha +7 \right) x^5+35\left( \alpha +5 \right) \cdots \left( \alpha +7 \right) x^4-35\left( \alpha +4 \right) \cdots \left( \alpha +7 \right) x^3+21\left( \alpha +3 \right) \cdots \left( \alpha +7 \right) x^2-7\left( \alpha +2 \right) \cdots \left( \alpha +7 \right) x+\left( \alpha +1 \right) \cdots \left( \alpha +7 \right)) \,</math> |- | align="center" | 8 | <math>\tfrac{1}{40320} (x^8-8\left( \alpha +8 \right) x^7+28\left( \alpha +7 \right) \left( \alpha +8 \right) x^6-56\left( \alpha +6 \right) \cdots \left( \alpha +8 \right) x^5+70\left( \alpha +5 \right) \cdots \left( \alpha +8 \right) x^4-56\left( \alpha +4 \right) \cdots \left( \alpha +8 \right) x^3+28\left( \alpha +3 \right) \cdots \left( \alpha +8 \right) x^2-8\left( \alpha +2 \right) \cdots \left( \alpha +8 \right) x+\left( \alpha +1 \right) \cdots \left( \alpha +8 \right)) \,</math> |- | align="center" | 9 | <math>\tfrac{1}{362880} (-x^9+9\left( \alpha +9 \right) x^8-36\left( \alpha +8 \right) \left( \alpha +9 \right) x^7+84\left( \alpha +7 \right) \cdots \left( \alpha +9 \right) x^6-126\left( \alpha +6 \right) \cdots \left( \alpha +9 \right) x^5+126\left( \alpha +5 \right) \cdots \left( \alpha +9 \right) x^4-84\left( \alpha +4 \right) \cdots \left( \alpha +9 \right) x^3+36\left( \alpha +3 \right) \cdots \left( \alpha +9 \right) x^2-9\left( \alpha +2 \right) \cdots \left( \alpha +9 \right) x+\left( \alpha +1 \right) \cdots \left( \alpha +9 \right)) \,</math> |- | align="center" | 10 | <math>\tfrac{1}{3628800} (x^{10}-10\left( \alpha +10 \right) x^9+45\left( \alpha +9 \right) \left( \alpha +10 \right) x^8-120\left( \alpha +8 \right) \cdots \left( \alpha +10 \right) x^7+210\left( \alpha +7 \right) \cdots \left( \alpha +10 \right) x^6-252\left( \alpha +6 \right) \cdots \left( \alpha +10 \right) x^5+210\left( \alpha +5 \right) \cdots \left( \alpha +10 \right) x^4-120\left( \alpha +4 \right) \cdots \left( \alpha +10 \right) x^3+45\left( \alpha +3 \right) \cdots \left( \alpha +10 \right) x^2-10\left( \alpha +2 \right) \cdots \left( \alpha +10 \right) x+\left( \alpha +1 \right) \cdots \left( \alpha +10 \right)) \,</math> |} * The [[coefficient]] of the leading term is {{math|(−1)<sup>''n''</sup>/''n''<nowiki>!</nowiki>}}; * The [[constant term]], which is the value at 0, is <math display="block">L_n^{(\alpha)}(0) = {n+\alpha\choose n} = \frac{\Gamma(n + \alpha + 1)}{n!\, \Gamma(\alpha + 1)};</math> <!-- \frac{n^\alpha}{\Gamma(\alpha+1)} + O\left(n^{\alpha-1}\right);</math> --> * If {{math|''α''}} is non-negative, then ''L''<sub>''n''</sub><sup>(''α'')</sup> has ''n'' [[real number|real]], strictly positive [[Root of a function|roots]] (notice that <math>\left((-1)^{n-i} L_{n-i}^{(\alpha)}\right)_{i=0}^n</math> is a [[Sturm chain]]), which are all in the [[Interval (mathematics)|interval]] <math>\left( 0, n+\alpha+ (n-1) \sqrt{n+\alpha} \, \right].</math>{{citation needed|date=September 2011}} * The polynomials' asymptotic behaviour for large {{mvar|n}}, but fixed {{mvar|α}} and {{math|''x'' > 0}}, is given by<ref>Szegő, p. 198.</ref><ref>D. Borwein, J. M. Borwein, R. E. Crandall, "Effective Laguerre asymptotics", ''SIAM J. Numer. Anal.'', vol. 46 (2008), no. 6, pp. 3285–3312 {{doi|10.1137/07068031X}}</ref> <math display="block"> \begin{align} & L_n^{(\alpha)}(x) = \frac{n^{\frac{\alpha}{2}-\frac{1}{4}}}{\sqrt{\pi}} \frac{e^{\frac{x}{2}}}{x^{\frac{\alpha}{2}+\frac{1}{4}}} \sin\left(2 \sqrt{nx}- \frac{\pi}{2}\left(\alpha-\frac{1}{2} \right) \right)+O\left(n^{\frac{\alpha}{2}-\frac{3}{4}}\right), \\[6pt] & L_n^{(\alpha)}(-x) = \frac{(n+1)^{\frac{\alpha}{2}-\frac{1}{4}}}{2\sqrt{\pi}} \frac{e^{-x/2}}{x^{\frac{\alpha}{2}+\frac{1}{4}}} e^{2 \sqrt{x(n+1)}} \cdot\left(1+O\left(\frac{1}{\sqrt{n+1}}\right)\right), \end{align} </math> and summarizing by <math display="block">\frac{L_n^{(\alpha)}\left(\frac x n\right)}{n^\alpha}\approx e^{x/ 2n} \cdot \frac{J_\alpha\left(2\sqrt x\right)}{\sqrt x^\alpha},</math> where <math>J_\alpha</math> is the [[Bessel function#Asymptotic forms|Bessel function]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)