Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lah number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Identities and relations== The Lah numbers satisfy a variety of identities and relations. In [[Jovan Karamata|Karamata]]β[[Donald Knuth|Knuth]] notation for [[Stirling numbers]]<math display="block"> L(n,k) = \sum_{j=k}^n \left[{n\atop j}\right] \left\{{j\atop k}\right\}</math>where <math display="inline">\left[{n\atop j}\right]</math> are the [[Stirling numbers of the first kind|unsigned Stirling numbers of the first kind]] and <math display="inline">\left\{{j\atop k}\right\}</math> are the [[Stirling numbers of the second kind]]. :<math> L(n,k) = {n-1 \choose k-1} \frac{n!}{k!} = {n \choose k} \frac{(n-1)!}{(k-1)!} = {n \choose k} {n-1 \choose k-1} (n-k)!</math> :<math> L(n,k) = \frac{n!(n-1)!}{k!(k-1)!}\cdot\frac{1}{(n-k)!} = \left (\frac{n!}{k!} \right )^2\frac{k}{n(n-k)!}</math> :<math> k(k+1) L(n,k+1) = (n-k) L(n,k)</math>, for <math>k>0</math>. === Recurrence relations === The Lah numbers satisfy the recurrence relations<math display="block"> \begin{align} L(n+1,k) &= (n+k) L(n,k) + L(n,k-1) \\ &= k(k+1) L(n, k+1) + 2k L(n, k) + L(n, k-1) \end{align} </math>where <math>L(n,0)=\delta_n</math>, the [[Kronecker delta]], and <math>L(n,k)=0</math> for all <math>k > n</math>. === Exponential generating function === :<math>\sum_{n\geq k} L(n,k)\frac{x^n}{n!} = \frac{1}{k!}\left( \frac{x}{1-x} \right)^k</math> === Derivative of exp(1/''x'') === The ''n''-th [[derivative]] of the function <math>e^\frac1{x}</math> can be expressed with the Lah numbers, as follows<ref>{{cite journal |last1=Daboul |first1=Siad |last2=Mangaldan |first2=Jan |last3=Spivey |first3=Michael Z. |last4=Taylor |first4=Peter J. |year=2013 |title=The Lah Numbers and the nth Derivative of <math>e^{1\over x}</math> |journal=Mathematics Magazine |volume=86 |pages=39β47 |doi=10.4169/math.mag.86.1.039 |jstor=10.4169/math.mag.86.1.039 |s2cid=123113404 |number=1}}</ref><math display="block"> \frac{\textrm d^n}{\textrm dx^n} e^\frac1x = (-1)^n \sum_{k=1}^n \frac{L(n,k)}{x^{n+k}} \cdot e^\frac1x.</math>For example, <math> \frac{\textrm d}{\textrm dx} e^\frac1x = - \frac{1}{x^2} \cdot e^{\frac1x}</math> <math> \frac{\textrm d^2}{\textrm dx^2}e^\frac1{x} = \frac{\textrm d}{\textrm dx} \left(-\frac1{x^2} e^{\frac1x} \right)= -\frac{-2}{x^3} \cdot e^{\frac1x} - \frac1{x^2} \cdot \frac{-1}{x^2} \cdot e^{\frac1x}= \left(\frac2{x^3} + \frac1{x^4}\right) \cdot e^{\frac1x}</math> <math> \frac{\textrm d^3}{\textrm dx^3} e^\frac1{x} = \frac{\textrm d}{\textrm dx} \left( \left(\frac2{x^3} + \frac1{x^4}\right) \cdot e^{\frac1x} \right) = \left(\frac{-6}{x^4} + \frac{-4}{x^5}\right) \cdot e^{\frac1x} + \left(\frac2{x^3} + \frac1{x^4}\right) \cdot \frac{-1}{x^2} \cdot e^{\frac1x} =-\left(\frac6{x^4} + \frac6{x^5} + \frac1{x^6}\right) \cdot e^{\frac{1}{x}}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)