Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Legendre polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Definition via generating function === The Legendre polynomials can also be defined as the coefficients in a formal expansion in powers of <math>t</math> of the [[generating function]]<ref>{{harvnb|Arfken|Weber|2005|loc=p.743}}</ref> {{NumBlk||<math display="block">\frac{1}{\sqrt{1-2xt+t^2}} = \sum_{n=0}^\infty P_n(x) t^n \,.</math>|{{EquationRef|2}}}} The coefficient of <math>t^n</math> is a polynomial in <math> x </math> of degree <math>n</math> with <math>|x| \leq 1</math>. Expanding up to <math>t^1</math> gives <math display="block">P_0(x) = 1 \,,\quad P_1(x) = x.</math> Expansion to higher orders gets increasingly cumbersome, but is possible to do systematically, and again leads to one of the explicit forms given below. It is possible to obtain the higher <math>P_n</math>'s without resorting to direct expansion of the [[Taylor series]], however. Equation {{EquationNote|2}} is differentiated with respect to {{mvar|t}} on both sides and rearranged to obtain <math display="block">\frac{x-t}{\sqrt{1-2xt+t^2}} = \left(1-2xt+t^2\right) \sum_{n=1}^\infty n P_n(x) t^{n-1} \,.</math> Replacing the quotient of the square root with its definition in Eq. {{EquationNote|2}}, and [[equating the coefficients]] of powers of {{math|''t''}} in the resulting expansion gives ''Bonnet’s recursion formula'' <math display="block"> (n+1) P_{n+1}(x) = (2n+1) x P_n(x) - n P_{n-1}(x)\,.</math> This relation, along with the first two polynomials {{math|''P''<sub>0</sub>}} and {{math|''P''<sub>1</sub>}}, allows all the rest to be generated recursively. The generating function approach is directly connected to the [[multipole expansion]] in electrostatics, as explained below, and is how the polynomials were first defined by Legendre in 1782.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)