Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Leidenfrost effect
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Heat transfer correlations == The heat transfer coefficient may be approximated using Bromley's equation,<ref name="ReferenceA"/> <math display="block">h=C{{\left[ \frac{k_{v}^{3}{{\rho }_{v}}g\left( {{\rho }_{L}}-{{\rho }_{v}} \right)\left( {{h}_{fg}}+0.4{{c}_{pv}}\left( {{T}_{s}}-{{T}_{sat}} \right) \right)}{{{D}_{o}}{{\mu }_{v}}\left( {{T}_{s}}-{{T}_{sat}} \right)} \right]}^{{}^{1}\!\!\diagup\!\!{}_{4}\;}}</math> where <math>{{D}_{o}}</math> is the outside diameter of the tube. The correlation constant ''C'' is 0.62 for horizontal cylinders and vertical plates, and 0.67 for spheres. Vapor properties are evaluated at film temperature. For stable film boiling on a horizontal surface, Berenson has modified Bromley's equation to yield,<ref name="ReferenceB">{{cite book |first1=James R. |last1=Welty |first2=Charles E. |last2=Wicks |first3=Robert E. |last3=Wilson |first4=Gregory L. |last4=Rorrer |title=Fundamentals of Momentum, Heat and Mass transfer |edition=5th |year=2008 |publisher=John Wiley and Sons |page=327 |isbn=978-0-470-12868-8 }}</ref> <math display="block">h=0.425{{\left[ \frac{k_{vf}^{3}{{\rho }_{vf}}g\left( {{\rho }_{L}}-{{\rho }_{v}} \right)\left( {{h}_{fg}}+0.4{{c}_{pv}}\left( {{T}_{s}}-{{T}_{sat}} \right) \right)}{{{\mu }_{vf}}\left( {{T}_{s}}-{{T}_{sat}} \right)\sqrt{\sigma /g\left( {{\rho }_{L}}-{{\rho }_{v}} \right)}} \right]}^{{}^{1}\!\!\diagup\!\!{}_{4}\;}}</math> For vertical tubes, Hsu and Westwater have correlated the following equation,<ref name="ReferenceB"/> <math display="block">h{{\left[ \frac{\mu _{v}^{2}}{g{{\rho }_{v}}\left( {{\rho }_{L}}-{{\rho }_{v}} \right)k_{v}^{3}} \right]}^{{}^{1}\!\!\diagup\!\!{}_{3}\;}}=0.0020{{\left[ \frac{4m}{\pi {{D}_{v}}{{\mu }_{v}}} \right]}^{0.6}}</math> where m is the mass flow rate in <math>l{{b}_{m}}/hr</math> at the upper end of the tube. At excess temperatures above that at the minimum heat flux, the contribution of radiation becomes appreciable, and it becomes dominant at high excess temperatures. The total heat transfer coefficient is thus a combination of the two. Bromley has suggested the following equations for film boiling from the outer surface of horizontal tubes: <math display="block">{{h}^{{}^{4}\!\!\diagup\!\!{}_{3}\;}}={{h}_{conv}}^{{}^{4}\!\!\diagup\!\!{}_{3}\;}+{{h}_{rad}}{{h}^{{}^{1}\!\!\diagup\!\!{}_{3}\;}}</math> If <math>{{h}_{rad}}<{{h}_{conv}}</math>, <math display="block">h={{h}_{conv}}+\frac{3}{4}{{h}_{rad}}</math> The effective radiation coefficient, <math>{{h}_{rad}}</math> can be expressed as, <math display="block">{{h}_{rad}}=\frac{\varepsilon \sigma \left( T_{s}^{4}-T_{sat}^{4} \right)}{\left( {{T}_{s}}-{{T}_{sat}} \right)}</math> where <math>\varepsilon </math> is the emissivity of the solid and <math>\sigma </math> is the Stefan–Boltzmann constant.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)