Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Light field
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==The 4D light field== [[Image:Plenoptic-function-c.png|left|frame|Radiance along a ray remains constant if there are no blockers.]] In a plenoptic function, if the region of interest contains a [[concave polygon|concave]] object (e.g., a cupped hand), then light leaving one point on the object may travel only a short distance before another point on the object blocks it. No practical device could measure the function in such a region. However, for locations outside the object's [[convex hull]] (e.g., shrink-wrap), the plenoptic function can be measured by capturing multiple images. In this case the function contains redundant information, because the radiance along a ray remains constant throughout its length. The redundant information is exactly one dimension, leaving a four-dimensional function variously termed the photic field, the 4D light field<ref>Levoy 1996</ref> or lumigraph.<ref>Gortler 1996</ref> Formally, the field is defined as radiance along rays in empty space. The set of rays in a light field can be parameterized in a variety of ways. The most common is the two-plane parameterization. While this parameterization cannot represent all rays, for example rays parallel to the two planes if the planes are parallel to each other, it relates closely to the [[analytic geometry]] of perspective imaging. A simple way to think about a two-plane light field is as a collection of perspective images of the ''st'' plane (and any objects that may lie astride or beyond it), each taken from an observer position on the ''uv'' plane. A light field parameterized this way is sometimes called a light slab. [[Image:Light-field-parameterizations.png|left|frame| Some alternative parameterizations of the 4D light field, which represents the flow of light through an empty region of three-dimensional space. Left: points on a plane or curved surface and directions leaving each point. Center: pairs of points on the surface of a sphere. Right: pairs of points on two planes in general (meaning any) position.]] {{clear}} ===Sound analog=== The analog of the 4D light field for sound is the sound field or wave field'','' as in [[wave field synthesis]], and the corresponding parametrization is the [[Kirchhoff–Helmholtz integral]], which states that, in the absence of obstacles, a sound field over time is given by the pressure on a plane. Thus this is two dimensions of information at any point in time, and over time, a 3D field. This two-dimensionality, compared with the apparent four-dimensionality of light, is because light travels in rays (0D at a point in time, 1D over time), while by the [[Huygens–Fresnel principle]], a sound [[wave front]] can be modeled as spherical waves (2D at a point in time, 3D over time): light moves in a single direction (2D of information), while sound expands in every direction. However, light travelling in non-vacuous media may scatter in a similar fashion, and the irreversibility or information lost in the scattering is discernible in the apparent loss of a system dimension.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)