Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linear time-invariant system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Impulse response and convolution=== The behavior of a linear, continuous-time, time-invariant system with input signal ''x''(''t'') and output signal ''y''(''t'') is described by the convolution integral:<ref>Crutchfield, p. 1. ''Welcome!''</ref> :{| | <math>y(t) = (x * h)(t)</math> | <math>\mathrel{\stackrel{\mathrm{def}}{=}} \int\limits_{-\infty}^{\infty} x(t - \tau)\cdot h(\tau) \, \mathrm{d}\tau</math> |- | | <math>= \int\limits_{-\infty}^\infty x(\tau)\cdot h(t - \tau) \,\mathrm{d}\tau,</math> {{spaces|5}} (using [[Convolution#Commutativity|commutativity]]) |} where <math display="inline"> h(t)</math> is the system's response to an [[Dirac delta function|impulse]]: <math display="inline">x(\tau) = \delta(\tau)</math>. <math display="inline"> y(t) </math> is therefore proportional to a weighted average of the input function <math display="inline">x(\tau)</math>. The weighting function is <math display="inline"> h(-\tau)</math>, simply shifted by amount <math display="inline"> t</math>. As <math display="inline"> t</math> changes, the weighting function emphasizes different parts of the input function. When <math display="inline"> h(\tau)</math> is zero for all negative <math display="inline"> \tau</math>, <math display="inline"> y(t)</math> depends only on values of <math display="inline"> x</math> prior to time <math display="inline"> t</math>, and the system is said to be [[Causal system|causal]]. To understand why the convolution produces the output of an LTI system, let the notation <math display="inline"> \{x(u-\tau);\ u\}</math> represent the function <math display="inline"> x(u-\tau)</math> with variable <math display="inline"> u</math> and constant <math display="inline"> \tau</math>. And let the shorter notation <math display="inline"> \{x\}</math> represent <math display="inline"> \{x(u);\ u\}</math>. Then a continuous-time system transforms an input function, <math display="inline"> \{x\},</math> into an output function, <math display="inline">\{y\}</math>. And in general, every value of the output can depend on every value of the input. This concept is represented by: <math display="block">y(t) \mathrel{\stackrel{\text{def}}{=}} O_t\{x\},</math> where <math display="inline"> O_t</math> is the transformation operator for time <math display="inline"> t</math>. In a typical system, <math display="inline"> y(t)</math> depends most heavily on the values of <math display="inline"> x</math> that occurred near time <math display="inline"> t</math>. Unless the transform itself changes with <math display="inline"> t</math>, the output function is just constant, and the system is uninteresting. For a linear system, <math display="inline"> O</math> must satisfy {{EquationNote|Eq.1}}: {{NumBlk|:|<math> O_t\left\{\int\limits_{-\infty}^\infty c_{\tau}\ x_{\tau}(u) \, \mathrm{d}\tau ;\ u\right\} = \int\limits_{-\infty}^\infty c_\tau\ \underbrace{y_\tau(t)}_{O_t\{x_\tau\}} \, \mathrm{d}\tau. </math>|{{EquationRef|Eq.2}}}} And the time-invariance requirement is: {{NumBlk|:|<math> \begin{align} O_t\{x(u - \tau);\ u\} &\mathrel{\stackrel{\quad}{=}} y(t - \tau)\\ &\mathrel{\stackrel{\text{def}}{=}} O_{t-\tau}\{x\}.\, \end{align} </math> | {{EquationRef|Eq.3}} }} In this notation, we can write the '''impulse response''' as <math display="inline"> h(t) \mathrel{\stackrel{\text{def}}{=}} O_t\{\delta(u);\ u\}.</math> Similarly: :{| | <math>h(t - \tau)</math> | <math>\mathrel{\stackrel{\text{def}}{=}} O_{t-\tau}\{\delta(u);\ u\}</math> |- | | <math>= O_t\{\delta(u - \tau);\ u\}.</math> {{spaces|5}} (using {{EquationNote|Eq.3}}) |} Substituting this result into the convolution integral: <math display="block"> \begin{align} (x * h)(t) &= \int_{-\infty}^\infty x(\tau)\cdot h(t - \tau) \,\mathrm{d}\tau \\[4pt] &= \int_{-\infty}^\infty x(\tau)\cdot O_t\{\delta(u-\tau);\ u\} \, \mathrm{d}\tau,\, \end{align} </math> which has the form of the right side of {{EquationNote|Eq.2}} for the case <math display="inline"> c_\tau = x(\tau)</math> and <math display="inline"> x_\tau(u) = \delta(u-\tau).</math> {{EquationNote|Eq.2}} then allows this continuation: <math display="block"> \begin{align} (x * h)(t) &= O_t\left\{\int_{-\infty}^\infty x(\tau)\cdot \delta(u-\tau) \, \mathrm{d}\tau;\ u \right\}\\[4pt] &= O_t\left\{x(u);\ u \right\}\\ &\mathrel{\stackrel{\text{def}}{=}} y(t).\, \end{align} </math> In summary, the input function, <math display="inline"> \{x\}</math>, can be represented by a continuum of time-shifted impulse functions, combined "linearly", as shown at {{EquationRef|Eq.1}}. The system's linearity property allows the system's response to be represented by the corresponding continuum of impulse <u>responses</u>, combined in the same way. And the time-invariance property allows that combination to be represented by the convolution integral. The mathematical operations above have a simple graphical simulation.<ref>Crutchfield, p. 1. ''Exercises''</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)