Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linearity of differentiation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Linearity (directly)=== Let <math>a, b \in \mathbb{R}</math>. Let <math>f, g</math> be functions. Let <math>j</math> be a function, where <math>j</math> is defined only where <math>f</math> and <math>g</math> are both defined. (In other words, the domain of <math>j</math> is the intersection of the domains of <math>f</math> and <math>g</math>.) Let <math>x</math> be in the domain of <math>j</math>. Let <math>j(x) = af(x) + bg(x)</math>. We want to prove that <math>j^{\prime}(x) = af^{\prime}(x) + bg^{\prime}(x)</math>. By definition, we can see that <math display="block">\begin{align} j^{\prime}(x) &= \lim_{h \rightarrow 0} \frac{j(x + h) - j(x)}{h} \\ &= \lim_{h \rightarrow 0} \frac{\left( af(x + h) + bg(x + h) \right) - \left( af(x) + bg(x) \right)}{h} \\ &= \lim_{h \rightarrow 0} \left( a\frac{f(x + h) - f(x)}{h} + b\frac{g(x + h) - g(x)}{h} \right) \\ \end{align}</math> In order to use the limits law for the sum of limits, we need to know that <math display="inline">\lim_{h \to 0} a\frac{f(x + h) - f(x)}{h}</math> and <math display="inline">\lim_{h \to 0} b\frac{g(x + h) - g(x)}{h}</math> both individually exist. For these smaller limits, we need to know that <math display="inline">\lim_{h \to 0} \frac{f(x + h) - f(x)}{h}</math> and <math display="inline">\lim_{h \to 0} \frac{g(x + h) - g(x)}{h}</math> both individually exist to use the coefficient law for limits. By definition, <math display="inline">f^{\prime}(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}</math> and <math display="inline">g^{\prime}(x) = \lim_{h \to 0} \frac{g(x + h) - g(x)}{h}</math>. So, if we know that <math>f^{\prime}(x)</math> and <math>g^{\prime}(x)</math> both exist, we will know that <math display="inline">\lim_{h \to 0} \frac{f(x + h) - f(x)}{h}</math> and <math display="inline">\lim_{h \to 0} \frac{g(x + h) - g(x)}{h}</math> both individually exist. This allows us to use the coefficient law for limits to write <math display="block"> \lim_{h \to 0} a\frac{f(x + h) - f(x)}{h} = a\lim_{h \to 0}\frac{f(x + h) - f(x)}{h} </math> and <math display="block"> \lim_{h \to 0} b\frac{g(x + h) - g(x)}{h} = b\lim_{h \to 0}\frac{g(x + h) - g(x)}{h}. </math> With this, we can go back to apply the limit law for the sum of limits, since we know that <math display="inline">\lim_{h \rightarrow 0} a\frac{f(x + h) - f(x)}{h}</math> and <math display="inline">\lim_{h \rightarrow 0} b\frac{g(x + h) - g(x)}{h}</math> both individually exist. From here, we can directly go back to the derivative we were working on.<math display="block">\begin{align} j^{\prime}(x) &= \lim_{h \rightarrow 0} \left( a\frac{f(x + h) - f(x)}{h} + b\frac{g(x + h) - g(x)}{h} \right) \\ &= \lim_{h \rightarrow 0} \left( a\frac{f(x + h) - f(x)}{h}\right) + \lim_{h \rightarrow 0} \left(b\frac{g(x + h) - g(x)}{h} \right) \\ &= a\lim_{h \rightarrow 0} \left( \frac{f(x + h) - f(x)}{h}\right) + b\lim_{h \rightarrow 0} \left(\frac{g(x + h) - g(x)}{h} \right) \\ &= af^{\prime}(x) + bg^{\prime}(x) \end{align}</math>Finally, we have shown what we claimed in the beginning: <math>j^{\prime}(x) = af^{\prime}(x) + bg^{\prime}(x)</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)