Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Local field
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Examples=== #'''The ''p''-adic numbers''': the ring of integers of '''Q'''<sub>''p''</sub> is the ring of ''p''-adic integers '''Z'''<sub>''p''</sub>. Its prime ideal is ''p'''''Z'''<sub>''p''</sub> and its residue field is '''Z'''/''p'''''Z'''. Every non-zero element of '''Q'''<sub>p</sub> can be written as ''u'' ''p''<sup>''n''</sup> where ''u'' is a unit in '''Z'''<sub>''p''</sub> and ''n'' is an integer, with ''v''(''u'' ''p''<sup>n</sup>) = ''n'' for the normalized valuation. #'''The formal Laurent series over a finite field''': the ring of integers of '''F'''<sub>''q''</sub>((''T'')) is the ring of [[formal power series]] '''F'''<sub>''q''</sub><nowiki>[[</nowiki>''T''<nowiki>]]</nowiki>. Its maximal ideal is (''T'') (i.e. the set of [[power series]] whose [[constant term]]s are zero) and its residue field is '''F'''<sub>''q''</sub>. Its normalized valuation is related to the (lower) degree of a formal Laurent series as follows: #::<math>v\left(\sum_{i=-m}^\infty a_iT^i\right) = -m</math> (where ''a''<sub>−''m''</sub> is non-zero). #The formal Laurent series over the complex numbers is ''not'' a local field. For example, its residue field is '''C'''<nowiki>[[</nowiki>''T''<nowiki>]]</nowiki>/(''T'') = '''C''', which is not finite.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)