Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Local zeta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Motivations== The relationship between the definitions of ''G'' and ''Z'' can be explained in a number of ways. (See for example the infinite product formula for ''Z'' below.) In practice it makes ''Z'' a [[rational function]] of ''t'', something that is interesting even in the case of ''V'' an [[elliptic curve]] over a finite field. The local ''Z'' zeta functions are multiplied to get global ''<math>\zeta</math>'' zeta functions, <math>\zeta = \prod Z</math> These generally involve different finite fields (for example the whole family of fields '''Z'''/''p'''''Z''' as ''p'' runs over all [[prime number]]s). In these fields, the variable ''t'' is substituted by ''p<sup>−s</sup>'', where ''s'' is the complex variable traditionally used in [[Dirichlet series]]. (For details see [[Hasse–Weil zeta function]].) The global products of ''Z'' in the two cases used as examples in the previous section therefore come out as <math>\zeta(s)</math> and <math>\zeta(s)\zeta(s-1)</math> after letting <math>q=p</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)