Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Log-normal distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Probability density function === A positive random variable <math> X </math> is log-normally distributed (i.e., {{nowrap|<math display="inline"> X \sim \operatorname{Lognormal} \left( \mu, \sigma^2 \right) </math>),}} if the natural logarithm of <math> X </math> is normally distributed with mean <math> \mu</math> and variance {{nowrap|<math> \sigma^2</math>:}} <math display="block"> \ln X \sim \mathcal{N}(\mu,\sigma^2)</math> Let <math> \Phi </math> and <math> \varphi </math> be respectively the cumulative probability distribution function and the probability density function of the <math> \mathcal{N}( 0, 1 ) </math> standard normal distribution, then we have that<ref name=":1"/><ref name="JKB"/> the [[probability density function]] of the log-normal distribution is given by: <math display="block">\begin{align} f_X(x) & = \frac{d}{dx} \Pr\nolimits_X\left[ X \le x \right] \\[6pt] & = \frac{d}{dx} \Pr\nolimits_X\left[ \ln X \le \ln x \right] \\[6pt] & = \frac{d}{dx} \Phi{\left( \frac{ \ln x -\mu }{ \sigma } \right)} \\[6pt] & = \varphi{\left( \frac{\ln x - \mu} \sigma \right)} \frac{d}{dx} \left( \frac{ \ln x - \mu }{ \sigma }\right) \\[6pt] & = \varphi{\left( \frac{ \ln x - \mu }{ \sigma } \right)} \frac{ 1 }{ \sigma x } \\[6pt] & = \frac{ 1 }{ x \sigma\sqrt{2 \pi } } \exp\left( -\frac{ (\ln x-\mu)^2 }{2 \sigma^2} \right) ~. \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)