Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Logarithmic form
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Logarithmic differentials in algebraic geometry== In algebraic geometry, the vector bundle of '''logarithmic differential ''p''-forms''' <math>\Omega^p_X(\log D)</math> on a [[smooth scheme]] ''X'' over a field, with respect to a [[divisor (algebraic geometry)|divisor]] <math>D = \sum D_j</math> with simple normal crossings, is defined as above: sections of <math>\Omega^p_X(\log D)</math> are (algebraic) differential forms ω on <math>X-D</math> such that both ω and ''d''ω have a pole of order at most one along ''D''.<ref>Deligne (1970), Lemma II.3.2.1.</ref> Explicitly, for a closed point ''x'' that lies in <math>D_j</math> for <math>1 \le j \le k</math> and not in <math>D_j</math> for <math>j > k</math>, let <math>u_j</math> be regular functions on some open neighborhood ''U'' of ''x'' such that <math>D_j</math> is the closed subscheme defined by <math>u_j=0</math> inside ''U'' for <math>1 \le j \le k</math>, and ''x'' is the closed subscheme of ''U'' defined by <math>u_1=\cdots=u_n=0</math>. Then a basis of sections of <math>\Omega^1_X(\log D)</math> on ''U'' is given by: :<math>{du_1 \over u_1}, \dots, {du_k \over u_k}, \, du_{k+1}, \dots, du_n.</math> This describes the vector bundle <math>\Omega^1_X(\log D)</math> on ''X'', and then <math>\Omega^p_X(\log D)</math> is the ''p''th exterior power of <math>\Omega^1_X(\log D)</math>. There is an [[exact sequence]] of [[coherent sheaves]] on ''X'': :<math>0 \to \Omega^1_X \to \Omega^1_X(\log D) \overset{\beta}\to \oplus_j ({i_j})_*\mathcal{O}_{D_j} \to 0,</math> where <math>i_j: D_j \to X</math> is the inclusion of an irreducible component of ''D''. Here β is called the '''residue''' map; so this sequence says that a 1-form with log poles along ''D'' is regular (that is, has no poles) [[if and only if]] its residues are zero. More generally, for any ''p'' ≥ 0, there is an exact sequence of coherent sheaves on ''X'': : <math>0 \to \Omega^p_X \to \Omega^p_X(\log D) \overset{\beta}\to \oplus_j ({i_j})_*\Omega^{p-1}_{D_j}(\log (D-D_j)) \to \cdots \to 0,</math> where the sums run over all irreducible components of given dimension of intersections of the divisors ''D''<sub>''j''</sub>. Here again, β is called the residue map. Explicitly, on an open subset of <math>X</math> that only meets one component <math>D_j</math> of <math>D</math>, with <math>D_j</math> locally defined by <math>f=0</math>, the residue of a logarithmic <math>p</math>-form along <math>D_j</math> is determined by: the residue of a regular ''p''-form is zero, whereas :<math>\text{Res}_{D_j}\bigg(\frac{df}{f}\wedge \alpha\bigg)=\alpha|_{D_j}</math> for any regular <math>(p-1)</math>-form <math>\alpha</math>.<ref>Deligne (1970), sections II.3.5 to II.3.7; Griffiths & Harris (1994), section 1.1.</ref> Some authors define the residue by saying that <math>\alpha\wedge(df/f)</math> has residue <math>\alpha|_{D_j}</math>, which differs from the definition here by the sign <math>(-1)^{p-1}</math>. ===Example of the residue=== Over the complex numbers, the residue of a differential form with log poles along a divisor <math>D_j</math> can be viewed as the result of [[integral|integration]] over loops in <math>X</math> around <math>D_j</math>. In this context, the residue may be called the [[Poincaré residue]]. For an explicit example,<ref>Griffiths & Harris (1994), section 2.1.</ref> consider an elliptic curve ''D'' in the complex [[projective plane]] <math>\mathbf{P}^2=\{ [x,y,z]\}</math>, defined in affine coordinates <math>z=1</math> by the equation <math>g(x,y) = y^2 - f(x) = 0,</math> where <math>f(x) = x(x-1)(x-\lambda)</math> and <math>\lambda\neq 0,1</math> is a complex number. Then ''D'' is a smooth [[hypersurface]] of degree 3 in <math>\mathbf{P}^2</math> and, in particular, a divisor with simple normal crossings. There is a meromorphic 2-form on <math>\mathbf{P}^2</math> given in affine coordinates by :<math>\omega =\frac{dx\wedge dy}{g(x,y)},</math> which has log poles along ''D''. Because the [[canonical bundle]] <math>K_{\mathbf{P}^2}=\Omega^2_{\mathbf{P}^2}</math> is isomorphic to the line bundle <math>\mathcal{O}(-3)</math>, the divisor of poles of <math>\omega</math> must have degree 3. So the divisor of poles of <math>\omega</math> consists only of ''D'' (in particular, <math>\omega</math> does not have a pole along the line <math>z=0</math> at infinity). The residue of ω along ''D'' is given by the holomorphic 1-form :<math> \text{Res}_D(\omega) = \left. \frac{dy}{\partial g/\partial x} \right |_D =\left. -\frac{dx}{\partial g/\partial y} \right |_D = \left. -\frac{1}{2}\frac{dx}{y} \right |_D. </math> It follows that <math>dx/y|_D </math> extends to a holomorphic one-form on the projective curve ''D'' in <math>\mathbf{P}^2</math>, an elliptic curve. The residue map <math>H^0(\mathbf{P}^2,\Omega^2_{\mathbf{P}^2}(\log D))\to H^0(D,\Omega^1_D)</math> considered here is part of a linear map <math>H^2(\mathbf{P}^2-D,\mathbf{C})\to H^1(D,\mathbf{C})</math>, which may be called the "Gysin map". This is part of the [[Gysin sequence]] associated to any smooth divisor ''D'' in a complex manifold ''X'': :<math>\cdots \to H^{j-2}(D)\to H^j(X)\to H^j(X-D)\to H^{j-1}(D)\to\cdots.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)