Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Logical connective
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===History of notations=== * Negation: the symbol <math>\neg</math> appeared in [[Arend Heyting|Heyting]] in 1930<ref name="heyting1930">{{cite journal |last1=Heyting |first1=A. |title=Die formalen Regeln der intuitionistischen Logik |journal=Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse |date=1930 |pages=42–56 |language=German}}</ref><ref>Denis Roegel (2002), ''[https://members.loria.fr/Roegel/loc/symboles-logiques-eng.pdf A brief survey of 20th century logical notations]'' (see chart on page 2).</ref> (compare to [[Gottlob Frege|Frege]]'s symbol ⫟ in his [[Begriffsschrift]]<ref name="frege1879a">{{cite book |last1=Frege |first1=G. |title=Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens |date=1879 |publisher=Verlag von Louis Nebert |location=Halle a/S. |page=10}}</ref>); the symbol <math>\sim</math> appeared in [[Bertrand Russell|Russell]] in 1908;<ref name="autogenerated222">[[Bertrand Russell|Russell]] (1908) ''Mathematical logic as based on the theory of types'' (American Journal of Mathematics 30, p222–262, also in From Frege to Gödel edited by van Heijenoort).</ref> an alternative notation is to add a horizontal line on top of the formula, as in <math>\overline{p}</math>; another alternative notation is to use a [[prime (symbol)|prime symbol]] as in <math>p'</math>. * Conjunction: the symbol <math>\wedge</math> appeared in Heyting in 1930<ref name="heyting1930"/> (compare to [[Giuseppe Peano|Peano]]'s use of the set-theoretic notation of [[intersection (set theory)|intersection]] <math>\cap</math><ref>[[Giuseppe Peano|Peano]] (1889) ''[[Arithmetices principia, nova methodo exposita]]''.</ref>); the symbol <math>\&</math> appeared at least in [[Moses Schönfinkel|Schönfinkel]] in 1924;<ref name="autogenerated1924">[[Moses Schönfinkel|Schönfinkel]] (1924) '' Über die Bausteine der mathematischen Logik'', translated as ''On the building blocks of mathematical logic'' in From Frege to Gödel edited by van Heijenoort.</ref> the symbol <math>\cdot</math> comes from [[George Boole|Boole]]'s interpretation of logic as an [[elementary algebra]]. * Disjunction: the symbol <math>\vee</math> appeared in [[Bertrand Russell|Russell]] in 1908<ref name="autogenerated222"/> (compare to [[Giuseppe Peano|Peano]]'s use of the set-theoretic notation of [[union (set theory)|union]] <math>\cup</math>); the symbol <math>+</math> is also used, in spite of the ambiguity coming from the fact that the <math>+</math> of ordinary [[elementary algebra]] is an [[exclusive or]] when interpreted logically in a two-element [[Boolean ring|ring]]; punctually in the history a <math>+</math> together with a dot in the lower right corner has been used by [[Charles Sanders Peirce|Peirce]].<ref>[[Charles Sanders Peirce|Peirce]] (1867) ''On an improvement in Boole's calculus of logic.</ref> * Implication: the symbol <math>\to</math> appeared in [[David Hilbert|Hilbert]] in 1918;<ref name="hilbert1918">{{cite book |last1=Hilbert |first1=D. |editor1-last=Bernays |editor1-first=P. |title=Prinzipien der Mathematik |date=1918 |others=Lecture notes at Universität Göttingen, Winter Semester, 1917-1918 |postscript=none}}; Reprinted as {{cite encyclopedia |title=Prinzipien der Mathematik |last=Hilbert |first=D. |encyclopedia=David Hilbert's Lectures on the Foundations of Arithmetic and Logic 1917–1933 |date=2013 |editor1-last=Ewald |editor1-first=W. |editor2-last=Sieg |editor2-first=W. |publisher=Springer |location=Heidelberg, New York, Dordrecht and London |pages=59–221}}</ref>{{rp|page=76}} <math>\supset</math> was used by Russell in 1908<ref name="autogenerated222"/> (compare to Peano's Ɔ the inverted C); <math>\Rightarrow</math> appeared in [[Nicolas Bourbaki|Bourbaki]] in 1954.<ref name="bourbaki1954a">{{cite book |last1=Bourbaki |first1=N. |title=Théorie des ensembles |date=1954 |publisher=Hermann & Cie, Éditeurs |location=Paris |page=14}}</ref> * Equivalence: the symbol <math>\equiv</math> in [[Gottlob Frege|Frege]] in 1879;<ref name="frege1879b">{{cite book |last1=Frege |first1=G. |title=Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens |date=1879 |publisher=Verlag von Louis Nebert |location=Halle a/S. |page=15 |language=German}}</ref> <math>\leftrightarrow</math> in Becker in 1933 (not the first time and for this see the following);<ref name="becker1933">{{cite book |last1=Becker |first1=A. |title=Die Aristotelische Theorie der Möglichkeitsschlösse: Eine logisch-philologische Untersuchung der Kapitel 13-22 von Aristoteles' Analytica priora I |date=1933 |publisher=Junker und Dünnhaupt Verlag |location=Berlin |page=4 |language=German}}</ref> <math>\Leftrightarrow</math> appeared in [[Nicolas Bourbaki|Bourbaki]] in 1954;<ref name="bourbaki1954b">{{cite book |last1=Bourbaki |first1=N. |title=Théorie des ensembles |date=1954 |publisher=Hermann & Cie, Éditeurs |location=Paris |page=32 |language=French}}</ref> other symbols appeared punctually in the history, such as <math>\supset\subset</math> in [[Gerhard Gentzen|Gentzen]],<ref>[[Gerhard Gentzen|Gentzen]] (1934) ''Untersuchungen über das logische Schließen''.</ref> <math>\sim</math> in Schönfinkel<ref name="autogenerated1924"/> or <math>\subset\supset</math> in Chazal, <ref>Chazal (1996) : Éléments de logique formelle.</ref> * True: the symbol <math>1</math> comes from [[George Boole|Boole]]'s interpretation of logic as an [[elementary algebra]] over the [[two-element Boolean algebra]]; other notations include <math>\mathrm{V}</math> (abbreviation for the Latin word "verum") to be found in Peano in 1889. * False: the symbol <math>0</math> comes also from Boole's interpretation of logic as a ring; other notations include <math>\Lambda</math> (rotated <math>\mathrm{V}</math>) to be found in Peano in 1889. Some authors used letters for connectives: <math>\operatorname{u.}</math> for conjunction (German's "und" for "and") and <math>\operatorname{o.}</math> for disjunction (German's "oder" for "or") in early works by Hilbert (1904);<ref name="hilbert1904">{{cite encyclopedia |last1=Hilbert |first1=D. |title=Über die Grundlagen der Logik und der Arithmetik |encyclopedia=Verhandlungen des Dritten Internationalen Mathematiker Kongresses in Heidelberg vom 8. bis 13. August 1904 |editor1-last=Krazer |editor1-first=K. |orig-date=1904 |date=1905 |pages=174–185}}</ref> <math>Np</math> for negation, <math>Kpq</math> for conjunction, <math>Dpq</math> for alternative denial, <math>Apq</math> for disjunction, <math>Cpq</math> for implication, <math>Epq</math> for biconditional in [[Jan Łukasiewicz|Łukasiewicz]] in 1929.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)