Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Logical disjunction
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Classical disjunction== === Semantics === In the [[semantics of logic]], classical disjunction is a [[truth function]]al [[logical operation|operation]] which returns the [[truth value]] ''true'' unless both of its arguments are ''false''. Its semantic entry is standardly given as follows:{{efn|For the sake of generality across classical systems, this entry suppresses the parameters of evaluation. The [[double turnstile]] [[List of logic symbols|symbol]] <math> \models </math> here is intended to mean "semantically entails".<!--this is hardly readable without context, it means "(X ⊨ phi ∨ psi) if [(X ⊨ phi) or (X ⊨ psi)], for any X", in other words, " '∨' means 'or' ".-->}} :: <math> \models \phi \lor \psi</math> if <math> \models \phi</math> or <math>\models \psi</math> or both This semantics corresponds to the following [[truth table]]:<ref name=":1" /> {{2-ary truth table|0|1|1|1|<math>A \lor B</math>}} ===Defined by other operators=== In [[classical logic]] systems where logical disjunction is not a primitive, it can be defined in terms of the primitive ''[[logical conjunction|and]]'' (<math>\land</math>) and ''[[logical negation|not]]'' (<math>\lnot</math>) as: :<math>A \lor B = \neg ((\neg A) \land (\neg B))</math>. Alternatively, it may be defined in terms of ''[[material conditional|implies]]'' (<math>\to</math>) and ''not'' as:<ref>{{cite book |last=Walicki |first=Michał |author-link= |date=2016 |title=Introduction to Mathematical Logic |url=https://www.worldscientific.com/doi/abs/10.1142/9783 |publisher=WORLD SCIENTIFIC |page=150 |doi=10.1142/9783 |isbn=978-9814343879 }}</ref> :<math>A \lor B = (\lnot A) \to B</math>. The latter can be checked by the following truth table: {{2-ary truth table |1|1|0|0|<math>\neg A</math> |thick |0|1|1|1|<math>\neg A \rightarrow B</math> | |0|1|1|1|<math>A \or B</math> }} It may also be defined solely in terms of <math>\to</math>: :<math>A \lor B = (A \to B) \to B</math>. It can be checked by the following truth table: {{2-ary truth table |1|1|0|1|<math>A \rightarrow B</math> |thick |0|1|1|1|<math>(A \rightarrow B) \rightarrow B</math> | |0|1|1|1|<math>A \or B</math> }} <!-- === Proof theory === --> ===Properties=== The following properties apply to disjunction: *[[Associativity]]: <math>a \lor (b \lor c) \equiv (a \lor b) \lor c </math>'''<ref name=":13">{{Cite book |last=Howson |first=Colin |title=Logic with trees: an introduction to symbolic logic |date=1997 |publisher=Routledge |isbn=978-0-415-13342-5 |location=London; New York |pages=38}}</ref>''' *[[Commutativity]]: <math>a \lor b \equiv b \lor a </math> *[[Distributivity]]: <math>(a \land (b \lor c)) \equiv ((a \land b) \lor (a \land c))</math> :::<math>(a \lor (b \land c)) \equiv ((a \lor b) \land (a \lor c))</math> :::<math>(a \lor (b \lor c)) \equiv ((a \lor b) \lor (a \lor c))</math> :::<math>(a \lor (b \equiv c)) \equiv ((a \lor b) \equiv (a \lor c))</math> *[[Idempotency]]: <math>a \lor a \equiv a </math> *[[Monotonicity]]: <math>(a \rightarrow b) \rightarrow ((c \lor a) \rightarrow (c \lor b))</math> :::<math>(a \rightarrow b) \rightarrow ((a \lor c) \rightarrow (b \lor c))</math> *''Truth-preserving'': The interpretation under which all variables are assigned a [[truth value]] of 'true', produces a truth value of 'true' as a result of disjunction. *''Falsehood-preserving'': The interpretation under which all variables are assigned a [[truth value]] of 'false', produces a truth value of 'false' as a result of disjunction.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)