Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lp space
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Relations between {{math|''p''}}-norms==== The grid distance or rectilinear distance (sometimes called the "[[Manhattan distance]]") between two points is never shorter than the length of the line segment between them (the Euclidean or "as the crow flies" distance). Formally, this means that the Euclidean norm of any vector is bounded by its 1-norm: <math display="block">\|x\|_2 \leq \|x\|_1 .</math> This fact generalizes to <math>p</math>-norms in that the <math>p</math>-norm <math>\|x\|_p</math> of any given vector <math>x</math> does not grow with <math>p</math>: {{block indent | em = 1.5 | text = <math>\|x\|_{p+a} \leq \|x\|_p</math> for any vector <math>x</math> and real numbers <math>p \geq 1</math> and <math>a \geq 0.</math> (In fact this remains true for <math>0 < p < 1</math> and <math>a \geq 0</math> .)}} For the opposite direction, the following relation between the <math>1</math>-norm and the <math>2</math>-norm is known: <math display="block">\|x\|_1 \leq \sqrt{n} \|x\|_2 ~.</math> This inequality depends on the dimension <math>n</math> of the underlying vector space and follows directly from the [[Cauchy–Schwarz inequality]]. In general, for vectors in <math>\Complex^n</math> where <math>0 < r < p:</math> <math display="block">\|x\|_p \leq \|x\|_r \leq n^{\frac{1}{r} - \frac{1}{p}} \|x\|_p ~.</math> This is a consequence of [[Hölder's inequality]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)