Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lucas number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Relationship to Fibonacci numbers== [[File:Comparison_Fibonacci_and_Lucas_numbers.svg|thumb|300px|The first identity expressed visually]] The Lucas numbers are related to the Fibonacci numbers by many [[identity (mathematics)|identities]]. Among these are the following: * <math>L_n = F_{n-1}+F_{n+1} = 2F_{n+1}-F_n</math> * <math>L_{m+n} = L_{m+1}F_{n}+L_mF_{n-1}</math> * <math>F_{2n} = L_n F_n</math> * <math>F_{n+k} + (-1)^k F_{n-k} = L_k F_n</math> * <math>2F_{2n+k} = L_{n} F_{n+k} + L_{n+k} F_{n}</math> * <math>L_{2n} = 5 F_n^2 + 2(-1)^n = L_n^2 - 2(-1)^n</math>, so <math>\lim_{n\to\infty} \frac{L_n}{F_n}=\sqrt{5}</math>. * <math> \vert L_n - \sqrt{5} F_n \vert = \frac{2}{\varphi^n} \to 0 </math> * <math>L_{n+k} - (-1)^k L_{n-k} = 5 F_n F_k</math>; in particular, <math>F_n = {L_{n-1}+L_{n+1} \over 5}</math>, so <math>5F_n + L_n = 2L_{n+1}</math>. Their [[Closed-form expression|closed formula]] is given as: :<math>L_n = \varphi^n + (1-\varphi)^{n} = \varphi^n + (- \varphi)^{-n}=\left({ 1+ \sqrt{5} \over 2}\right)^n + \left({ 1- \sqrt{5} \over 2}\right)^n\, ,</math> where <math>\varphi</math> is the [[golden ratio]]. Alternatively, as for <math>n>1</math> the magnitude of the term <math>(-\varphi)^{-n}</math> is less than 1/2, <math>L_n</math> is the closest integer to <math>\varphi^n</math> or, equivalently, the integer part of <math>\varphi^n+1/2</math>, also written as <math>\lfloor \varphi^n+1/2 \rfloor</math>. Combining the above with [[Binet's formula]], :<math>F_n = \frac{\varphi^n - (1-\varphi)^{n}}{\sqrt{5}}\, ,</math> a formula for <math>\varphi^n</math> is obtained: :<math>\varphi^n = {{L_n + F_n \sqrt{5}} \over 2}\, .</math> For integers ''n'' β₯ 2, we also get: :<math> \varphi^n = L_n - (- \varphi)^{-n} = L_n - (-1)^n L_n^{-1} - L_n^{-3} + R </math> with remainder ''R'' satisfying :<math> \vert R \vert < 3 L_n^{-5} </math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)