Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lucas pseudoprime
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Strong Lucas pseudoprimes== Now, factor <math>\delta(n)=n-\left(\tfrac{D}{n}\right)</math> into the form <math>d\cdot2^s</math> where <math>d</math> is odd. A '''strong Lucas pseudoprime''' for a given (''P'', ''Q'') pair is an odd composite number ''n'' with GCD(''n, D'') = 1, satisfying one of the conditions :<math> U_d \equiv 0 \pmod n </math> or :<math> V_{d \cdot 2^r} \equiv 0 \pmod n </math> for some 0 ≤ ''r'' < ''s''; see page 1396 of.<ref name="lpsp"/> A strong Lucas pseudoprime is also a Lucas pseudoprime (for the same (''P'', ''Q'') pair), but the converse is not necessarily true. Therefore, the '''strong''' test is a more stringent primality test than equation ({{EquationNote|1}}). There are infinitely many strong Lucas pseudoprimes, and therefore, infinitely many Lucas pseudoprimes. Theorem 7 in <ref name="lpsp"/> states: Let <math>P</math> and <math>Q</math> be relatively prime positive integers for which <math>P^2 - 4Q</math> is positive but not a square. Then there is a positive constant <math>c</math> (depending on <math>P</math> and <math>Q</math>) such that the number of strong Lucas pseudoprimes not exceeding <math>x</math> is greater than <math>c \cdot \log x</math>, for <math>x</math> sufficiently large. We can set ''Q'' = β1, then <math>U_n</math> and <math>V_n</math> are ''P''-Fibonacci sequence and ''P''-Lucas sequence, the pseudoprimes can be called '''strong Lucas pseudoprime in base ''P''''', for example, the least strong Lucas pseudoprime with ''P'' = 1, 2, 3, ... are 4181, 169, 119, ... An '''extra strong Lucas pseudoprime'''<ref name=ExtraStrong>{{cite tech report |first1=Zheiyu |last1=Mo |first2=James P. |last2=Jones |title=A new primality test using Lucas sequences |type=preprint }} cited in {{cite journal |title=A Probable Prime Test With High Confidence |first=Jon |last=Grantham |journal=Journal of Number Theory |year=1998 |volume=72 |issue=1 |pages=32β47 |article-number=NT982247 |doi=10.1006/jnth.1998.2247 |arxiv=1903.06823 |citeseerx=10.1.1.56.8827 |s2cid=119640473 |url=https://les-mathematiques.net/vanilla/uploads/editor/ix/sp1k717k3k9a.pdf <!-- |url=http://www.pseudoprime.com/pseudo2.ps--> }}</ref><ref name="FrobeniusPSP">{{cite journal |title=Frobenius Pseudoprimes |first=Jon |last=Grantham |journal=Mathematics of Computation |year=2001 |volume=70 |issue=234 |pages=873β891 |doi=10.1090/S0025-5718-00-01197-2 |doi-access=free |arxiv=1903.06820 |mr=1680879 |bibcode=2001MaCom..70..873G |url=http://www.pseudoprime.com/pseudo1.ps }}</ref> is a strong Lucas pseudoprime for a set of parameters (''P'', ''Q'') where ''Q'' = 1, satisfying one of the conditions :<math> U_d \equiv 0 \text{ and } V_d \equiv \pm 2 \pmod {n} </math> or :<math> V_{d \cdot 2^r} \equiv 0 \pmod {n} </math> for some <math> 0 \le r < s-1</math>. An extra strong Lucas pseudoprime is also a strong Lucas pseudoprime for the same <math>(P,Q)</math> pair. No number can be a strong Lucas pseudoprime to more than {{frac|4}} of all bases, or an extra strong Lucas pseudoprime to more than {{frac|8}} of all bases.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)