Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Many-valued logic
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Kleene (strong) {{math|''K''<sub>3</sub>}} and Priest logic {{math|''P''<sub>3</sub>}} === [[Stephen Cole Kleene|Kleene]]'s "(strong) logic of indeterminacy" {{math|''K''<sub>3</sub>}} (sometimes <math>K_3^S</math>) and [[Graham Priest|Priest]]'s "logic of paradox" add a third "undefined" or "indeterminate" truth value {{math|I}}. The truth functions for [[negation]] (Β¬), <!--(strong)--> [[logical conjunction|conjunction]] (β§), <!--(strong)--> [[disjunction]] (β¨), <!--(strong)--> [[material conditional|implication]] ({{underset|''K''|β}}), and <!--(strong)--> [[biconditional]] ({{underset|''K''|β}}) are given by:<ref>{{harv|Gottwald|2005|p=19}}</ref> {| cellpadding="0" |- valign="bottom" | {| class="wikitable" style="text-align:center;" |- ! width="25" | Β¬ ! width="25" | |- ! {{math|T}} | {{math|F}} |- ! {{math|I}} | {{math|I}} |- ! {{math|F}} | {{math|T}} |} || || || {| class="wikitable" style="text-align: center;" |- ! width="25" | β§ ! width="25" | {{math|T}} ! width="25" | {{math|I}} ! width="25" | {{math|F}} |- ! {{math|T}} | {{math|T}} || {{math|I}} || {{math|F}} |- ! {{math|I}} | {{math|I}} || {{math|I}} || {{math|F}} |- ! {{math|F}} | {{math|F}} || {{math|F}} || {{math|F}} |} || || || {| class="wikitable" style="text-align: center;" |- ! width="25" | β¨ ! width="25" | {{math|T}} ! width="25" | {{math|I}} ! width="25" | {{math|F}} |- ! {{math|T}} | {{math|T}} || {{math|T}} || {{math|T}} |- ! {{math|I}} | {{math|T}} || {{math|I}} || {{math|I}} |- ! {{math|F}} | {{math|T}} || {{math|I}} || {{math|F}} |} || || || {| class="wikitable" style="text-align: center;" |- ! width="25" | {{underset|''K''|β}} ! width="25" | {{math|T}} ! width="25" | {{math|I}} ! width="25" | {{math|F}} |- ! {{math|T}} | {{math|T}} || {{math|I}} || {{math|F}} |- ! {{math|I}} | {{math|T}} || {{math|I}} || {{math|I}} |- ! {{math|F}} | {{math|T}} || {{math|T}} || {{math|T}} |} || || || {| class="wikitable" style="text-align: center;" |- ! width="25" | {{underset|''K''|β}} ! width="25" | {{math|T}} ! width="25" | {{math|I}} ! width="25" | {{math|F}} |- ! {{math|T}} | {{math|T}} || {{math|I}} || {{math|F}} |- ! {{math|I}} | {{math|I}} || {{math|I}} || {{math|I}} |- ! {{math|F}} | {{math|F}} || {{math|I}} || {{math|T}} |} |} The difference between the two logics lies in how [[tautology (logic)|tautologies]] are defined. In {{math|''K''<sub>3</sub>}} only {{math|T}} is a ''designated truth value'', while in {{math|''P''<sub>3</sub>}} both {{math|T}} and {{math|I}} are (a logical formula is considered a tautology if it evaluates to a designated truth value). In Kleene's logic {{math|I}} can be interpreted as being "underdetermined", being neither true nor false, while in Priest's logic {{math|I}} can be interpreted as being "overdetermined", being both true and false. {{math|''K''<sub>3</sub>}} does not have any tautologies, while {{math|''P''<sub>3</sub>}} has the same tautologies as classical two-valued logic.<ref>{{cite book |last= Humberstone |first= Lloyd |date= 2011 |title= The Connectives |url= https://archive.org/details/connectives00humb |url-access= limited |location= Cambridge, Massachusetts |publisher= The MIT Press |pages= [https://archive.org/details/connectives00humb/page/n219 201] |isbn= 978-0-262-01654-4 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)