Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Margin of error
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Maximum margin of error at different confidence levels == [[File:Empirical Rule.PNG|thumb|350px]]For a confidence ''level'' <math>\gamma</math>, there is a corresponding confidence ''interval'' about the mean <math>\mu\plusmn z_\gamma\sigma</math>, that is, the interval <math>[\mu-z_\gamma\sigma,\mu+z_\gamma\sigma]</math> within which values of <math>P</math> should fall with probability <math>\gamma</math>. Precise values of <math>z_\gamma</math> are given by the [[Normal distribution#Quantile function|quantile function of the normal distribution]] (which the 68β95β99.7 rule approximates). Note that <math>z_\gamma</math> is undefined for <math>|\gamma| \ge 1</math>, that is, <math>z_{1.00}</math> is undefined, as is <math>z_{1.10}</math>. {| class="wikitable" style="text-align:left;margin-left:24pt;border:none;" |- ! <math>\gamma</math> ! <math>z_{\gamma}</math> | rowspan="8" style="border:none;" | ! <math>\gamma</math> ! <math>z_{\gamma}</math> |- | 0.84 | {{val|0.994457883210}} | 0.9995 | {{val|3.290526731492}} |- | 0.95 | {{val|1.644853626951}} | 0.99995 | {{val|3.890591886413}} |- | 0.975 | [[1.96|1.959963984540]] | 0.999995 | {{val|4.417173413469}} |- | 0.99 | {{val|2.326347874041}} | 0.9999995 | {{val|4.891638475699}} |- | 0.995 | {{val|2.575829303549}} | 0.99999995 | {{val|5.326723886384}} |- | 0.9975 | {{val|2.807033768344}} | 0.999999995 | {{val|5.730728868236}} |- | 0.9985 | {{val|2.967737925342}} | 0.9999999995 | {{val|6.109410204869}} |} [[File:Margin of error vs sample size and confidence level.svg|thumb|250px|Log-log graphs of <math>MOE_{\gamma}(0.5)</math> vs sample size ''n'' and confidence level ''Ξ³''. The arrows show that the maximum margin error for a sample size of 1000 is Β±3.1% at 95% confidence level, and Β±4.1% at 99%.<br/>The inset parabola <math>\sigma_p^2 = p-p^2</math> illustrates the relationship between <math>\sigma_p^2</math> at <math>p=0.71</math> and <math>\sigma^2_{max}</math> at <math>p=0.5</math>. In the example, ''MOE''<sub>95</sub>(0.71) β {{nowrap|0.9 Γ Β±3.1%}} β Β±2.8%.]] Since <math>\max \sigma_P^2 = \max P(1-P) = 0.25</math> at <math>p = 0.5</math>, we can arbitrarily set <math>p=\overline{p} = 0.5</math>, calculate <math>\sigma_{P}</math>, <math>\sigma_\overline{p}</math>, and <math>z_\gamma\sigma_\overline{p}</math> to obtain the ''maximum'' margin of error for <math>P</math> at a given confidence level <math>\gamma</math> and sample size <math>n</math>, even before having actual results. With <math>p=0.5,n=1013</math> :<math>MOE_{95}(0.5) = z_{0.95}\sigma_\overline{p} \approx z_{0.95}\sqrt{\frac{\sigma_{P}^2}{n}} = 1.96\sqrt{\frac{.25}{n}} = 0.98/\sqrt{n}=\plusmn3.1%</math> :<math>MOE_{99}(0.5) = z_{0.99}\sigma_\overline{p} \approx z_{0.99}\sqrt{\frac{\sigma_{P}^2}{n}} = 2.58\sqrt{\frac{.25}{n}} = 1.29/\sqrt{n}=\plusmn4.1%</math> Also, usefully, for any reported <math>MOE_{95}</math> :<math>MOE_{99} = \frac{z_{0.99}}{z_{0.95}}MOE_{95} \approx 1.3 \times MOE_{95}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)