Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mathematical induction
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == === Sum of consecutive natural numbers === Mathematical induction can be used to prove the following statement {{math|''P''(''n'')}} for all natural numbers {{mvar|n}}. <math display="block">P(n)\!:\ \ 0 + 1 + 2 + \cdots + n = \frac{n(n + 1)}{2}.</math> This states a general formula for the sum of the natural numbers less than or equal to a given number; in fact an infinite sequence of statements: <math>0 = \tfrac{(0)(0+1)}2</math>, <math>0+1 = \tfrac{(1)(1+1)}2</math>, <math>0+1+2 = \tfrac{(2)(2+1)}2</math>, etc. '''<u>Proposition.</u>''' For every <math>n\in\mathbb{N}</math>, <math>0 + 1 + 2 + \cdots + n = \tfrac{n(n + 1)}{2}.</math> '''Proof.''' Let {{math|''P''(''n'')}} be the statement <math>0 + 1 + 2 + \cdots + n = \tfrac{n(n + 1)}{2}.</math> We give a proof by induction on {{mvar|n}}. ''Base case:'' Show that the statement holds for the smallest natural number {{math|1=''n'' = 0}}. {{math|''P''(0)}} is clearly true: <math>0 = \tfrac{0(0 + 1)}{2}\,.</math> ''Induction step:'' Show that for every {{math|''k'' β₯ 0}}, if {{math|''P''(''k'')}} holds, then {{math|''P''(''k'' + 1)}} also holds. Assume the induction hypothesis that for a particular {{mvar|k}}, the single case {{math|1=''n'' = ''k''}} holds, meaning {{math|''P''(''k'')}} is true:<math display="block">0 + 1 + \cdots + k = \frac{k(k+1)}2.</math> It follows that: <math display="block">(0 + 1 + 2 + \cdots + k )+ (k+1) = \frac{k(k+1)}2 + (k+1).</math> [[Algebra]]ically, the right hand side simplifies as: <math display="block">\begin{align} \frac{k(k+1)}{2} + (k+1) &= \frac{k(k+1) + 2(k+1)}{2} \\ &= \frac{(k+1)(k+2)}{2} \\ &= \frac{(k+1)((k+1) + 1)}{2}. \end{align}</math> Equating the extreme left hand and right hand sides, we deduce that:<math display="block">0 + 1 + 2 + \cdots + k + (k+1) = \frac{(k+1)((k+1)+1)}2.</math> That is, the statement {{math|''P''(''k'' + 1)}} also holds true, establishing the induction step. ''Conclusion:'' Since both the base case and the induction step have been proved as true, by mathematical induction the statement {{math|''P''(''n'')}} holds for every natural number {{mvar|n}}. [[Q.E.D.]] === A trigonometric inequality === Induction is often used to prove [[inequality (mathematics)|inequalities]]. As an example, we prove that <math>\left|\sin nx\right| \leq n\left|\sin x\right|</math> for any [[real number]] <math>x</math> and natural number <math>n</math>. At first glance, it may appear that a more general version, <math>\left|\sin nx\right| \leq n\left|\sin x\right|</math> for any ''real'' numbers <math>n,x</math>, could be proven without induction; but the case <math display="inline">n = \frac{1}{2},\, x=\pi</math> shows it may be false for non-integer values of <math>n</math>. This suggests we examine the statement specifically for ''natural'' values of <math>n</math>, and induction is the readiest tool. '''<u>Proposition.</u>''' For any <math>x \in \mathbb{R}</math> and <math>n \in \mathbb{N}</math>, <math>\left|\sin nx\right| \leq n\left|\sin x\right|</math>. '''Proof.''' Fix an arbitrary real number <math>x</math>, and let <math>P(n)</math> be the statement <math>\left|\sin nx\right| \leq n\left|\sin x\right|</math>. We induce on <math>n</math>. ''Base case:'' The calculation <math>\left|\sin 0x\right| = 0 \leq 0 = 0 \left|\sin x\right|</math> verifies <math>P(0)</math>. ''Induction step:'' We show the [[Logical consequence|implication]] <math>P(k) \implies P(k+1)</math> for any natural number <math>k</math>. Assume the induction hypothesis: for a given value <math>n = k \geq 0</math>, the single case <math>P(k)</math> is true. Using the [[List of trigonometric identities|angle addition formula]] and the [[Absolute value#Real numbers|triangle inequality]], we deduce: <math display="block">\begin{align} \left|\sin(k+1)x\right| &= \left|\sin kx \cos x+\sin x \cos kx\right| && \text{(angle addition)} \\ &\leq \left|\sin kx \cos x\right| + \left|\sin x\,\cos kx\right| && \text{(triangle inequality)} \\ &= \left|\sin kx\right|\left| \cos x\right| + \left|\sin x\right|\left|\cos kx\right| \\ &\leq \left|\sin kx\right| + \left|\sin x\right| && (\left|\cos t\right| \leq 1) \\ &\leq k\left|\sin x\right|+\left|\sin x\right| && \text{(induction hypothesis})\\ &= (k+1)\left|\sin x\right|. \end{align}</math> The inequality between the extreme left-hand and right-hand quantities shows that <math>P(k+1)</math> is true, which completes the induction step. ''Conclusion:'' The proposition <math>P(n)</math> holds for all natural numbers <math>n. </math>{{pad|4}} Q.E.D.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)