Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Matrix multiplication
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Matrix times matrix=== If {{math|'''A'''}} is an {{math|''m'' Γ ''n''}} matrix and {{math|'''B'''}} is an {{math|''n'' Γ ''p''}} matrix, <math display="block">\mathbf{A}=\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{pmatrix},\quad\mathbf{B}=\begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{np} \\ \end{pmatrix}</math> the ''matrix product'' {{math|1='''C''' = '''AB'''}} (denoted without multiplication signs or dots) is defined to be the {{math|''m'' Γ ''p''}} matrix<ref>{{cite book| title=Linear Algebra | edition=4th | first1 = S. | last1 = Lipschutz | first2 = M. | last2 = Lipson|series=Schaum's Outlines | publisher=McGraw Hill (USA) | date=2009 | pages=30β31 | isbn=978-0-07-154352-1}}</ref><ref>{{cite book | title=Mathematical methods for physics and engineering | url=https://archive.org/details/mathematicalmeth00rile | url-access = registration | first1 = K. F. | last1 = Riley | first2 = M. P. | last2 = Hobson | first3 = S. J. | last3 = Bence| publisher=Cambridge University Press | date=2010 | isbn=978-0-521-86153-3}}</ref><ref>{{cite book | title=Calculus, A Complete Course | edition=3rd| first = R. A. | last = Adams|publisher=Addison Wesley |date=1995 |page=627 |isbn=0-201-82823-5}}</ref><ref>{{cite book|title=Matrix Analysis | last = Horn | first = Johnson |edition=2nd | publisher=Cambridge University Press | date=2013 |page=6 |isbn=978-0-521-54823-6}}</ref> <math display="block">\mathbf{C} = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1p} \\ c_{21} & c_{22} & \cdots & c_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mp} \\ \end{pmatrix}</math> such that <math display="block"> c_{ij} = a_{i1} b_{1j} + a_{i2} b_{2j} + \cdots + a_{in} b_{nj} = \sum_{k=1}^n a_{ik} b_{kj}, </math> for {{math|1=''i'' = 1, ..., ''m''}} and {{math|1=''j'' = 1, ..., ''p''}}. That is, the entry {{tmath|c_{ij} }} of the product is obtained by multiplying term-by-term the entries of the {{mvar|i}}th row of {{math|'''A'''}} and the {{mvar|j}}th column of {{math|'''B'''}}, and summing these {{mvar|n}} products. In other words, {{tmath|c_{ij} }} is the [[dot product]] of the {{mvar|i}}th row of {{math|'''A'''}} and the {{mvar|j}}th column of {{math|'''B'''}}. Therefore, {{math|'''AB'''}} can also be written as <math display="block">\mathbf{C} = \begin{pmatrix} a_{11}b_{11} +\cdots + a_{1n}b_{n1} & a_{11}b_{12} +\cdots + a_{1n}b_{n2} & \cdots & a_{11}b_{1p} +\cdots + a_{1n}b_{np} \\ a_{21}b_{11} +\cdots + a_{2n}b_{n1} & a_{21}b_{12} +\cdots + a_{2n}b_{n2} & \cdots & a_{21}b_{1p} +\cdots + a_{2n}b_{np} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}b_{11} +\cdots + a_{mn}b_{n1} & a_{m1}b_{12} +\cdots + a_{mn}b_{n2} & \cdots & a_{m1}b_{1p} +\cdots + a_{mn}b_{np} \\ \end{pmatrix} </math> Thus the product {{math|'''AB'''}} is defined if and only if the number of columns in {{math|'''A'''}} equals the number of rows in {{math|'''B'''}},<ref name=":1" /> in this case {{math|''n''}}. In most scenarios, the entries are numbers, but they may be any kind of [[mathematical object]]s for which an addition and a multiplication are defined, that are [[associative property|associative]], and such that the addition is [[commutative property|commutative]], and the multiplication is [[distributive property|distributive]] with respect to the addition. In particular, the entries may be matrices themselves (see [[block matrix]]).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)