Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Maxwell–Boltzmann distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Typical speeds == [[File:Stellar MB.png|alt=Solar Atmosphere Maxwell–Boltzmann Distribution.|thumb|400px|The Maxwell–Boltzmann distribution corresponding to the solar atmosphere. Particle masses are one [[proton mass]], {{math|1=''m''<sub>p</sub> = {{val|1.67|e=-27|u=kg}} ≈ {{val|1|ul=Da}}}}, and the temperature is the effective temperature of the [[Photosphere|Sun's photosphere]], {{math|1=''T'' = 5800 K}}. <math>\tilde{V}</math>, <math>\bar{V}</math>, and {{math|''V''<sub>rms</sub>}} mark the most probable, mean, and root mean square velocities, respectively. Their values are <math>\tilde{V}</math> ≈ {{val|9.79|u=km/s}}, <math>\bar{V}</math> ≈ {{val|11.05|u=km/s}}, and {{math|''V''<sub>rms</sub> ≈ {{val|12.00|u=km/s}}}}.]] The [[expectation value|mean]] speed <math> \langle v \rangle</math>, most probable speed ([[Mode (statistics)|mode]]) {{math|''v''<sub>p</sub>}}, and root-mean-square speed <math display="inline">\sqrt{\langle v^2 \rangle}</math> can be obtained from properties of the Maxwell distribution. This works well for nearly [[ideal gas|ideal]], [[noble gas|monatomic]] gases like [[helium]], but also for [[Molecule|molecular gas]]es like diatomic [[oxygen]]. This is because despite the larger [[heat capacity]] (larger internal energy at the same temperature) due to their larger number of [[Equipartition theorem|degrees of freedom]], their [[Translation (physics)|translational]] [[kinetic energy]] (and thus their speed) is unchanged.<ref>{{cite book | title = College Physics, Volume 1 | edition = 9th | first1 = Raymond A. | last1 = Serway | first2 = Jerry S. | last2 = Faughn | first3 = Chris | last3 = Vuille | name-list-style=amp | year = 2011 | isbn = 9780840068484 | page = 352 | publisher = Cengage Learning | url = https://books.google.com/books?id=HLxV-IKYO5IC&pg=PA352 }}</ref> {{bulleted list | The most probable speed, {{math|''v''<sub>p</sub>}}, is the speed most likely to be possessed by any molecule (of the same mass {{mvar|m}}) in the system and corresponds to the maximum value or the [[mode (statistics)|mode]] of {{math|''f''(''v'')}}. To find it, we calculate the [[derivative]] {{tmath|\tfrac{df}{dv},}} set it to zero and solve for {{mvar|v}}: <math display="block"> \frac{df(v)}{dv} = -8\pi \biggl[\frac{m}{2 \pi k_\text{B}T}\biggr]^{3/2} \, v \, \left[\frac{mv^2}{2k_\text{B}T}-1\right] \exp\left(-\frac{mv^2}{2k_\text{B}T}\right) = 0 </math> with the solution: <math display="block"> \frac{mv_\text{p}^2}{2k_\text{B}T} = 1; \quad v_\text{p} = \sqrt{ \frac{2k_\text{B}T}{m} } = \sqrt{ \frac{2RT}{M} } </math>where: *{{mvar|R}} is the [[gas constant]]; *{{mvar|M}} is molar mass of the substance, and thus may be calculated as a product of particle mass, {{mvar|m}}, and [[Avogadro constant]], {{math|''N''<sub>A</sub>}}: <math>M = m N_\mathrm{A}.</math> For diatomic nitrogen ({{chem2|N2}}, the primary component of [[air]])<ref group="note">The calculation is unaffected by the nitrogen being diatomic. Despite the larger [[heat capacity]] (larger internal energy at the same temperature) of diatomic gases relative to monatomic gases, due to their larger number of [[Equipartition theorem|degrees of freedom]], <math>\frac{3RT}{M_\text{m}}</math> is still the mean [[Translation (physics)|translational]] [[kinetic energy]]. Nitrogen being diatomic only affects the value of the molar mass {{math|1=''M'' = {{val|28|u=g/mol}}}}. See e.g. K. Prakashan, ''Engineering Physics'' (2001), [https://books.google.com/books?id=6C0R1qpAk7EC&pg=SA2-PA278 2.278].</ref> at [[room temperature]] ({{val|300|u=K}}), this gives <math display="block">v_\text{p} \approx \sqrt{\frac{2 \cdot 8.31\, \mathrm{J {\cdot} {mol}^{-1} K^{-1}} \ 300\, \mathrm{K}}{0.028\, \mathrm{ {kg} {\cdot} {mol}^{-1} }}} \approx 422\, \mathrm{m/s}.</math> | The mean speed is the [[expected value]] of the speed distribution, setting <math display="inline">b= \frac{1}{2a^2} = \frac{m}{2k_\text{B}T}</math>: <math display="block">\begin{align} \langle v \rangle &= \int_0^{\infty} v \, f(v) \, dv \\[1ex] &= 4\pi \left[ \frac{b}{\pi} \right]^{3/2} \int_0^\infty v^3 e^{-b v^2} dv = 4\pi \left[ \frac{b}{\pi} \right]^{3/2} \frac{1}{2b^2} \\[1.4ex] &= \sqrt{\frac{4}{\pi b}} = \sqrt{ \frac{8k_\text{B}T}{\pi m}} = \sqrt{ \frac{8RT}{\pi M}} = \frac{2}{\sqrt{\pi}} v_\text{p} \end{align}</math> | The mean square speed <math>\langle v^2 \rangle</math> is the second-order [[Moment (mathematics)|raw moment]] of the speed distribution. The "root mean square speed" <math> v_\text{rms}</math> is the square root of the mean square speed, corresponding to the speed of a particle with average [[kinetic energy]], setting <math display="inline">b = \frac{1}{2a^2} = \frac{m}{2k_\text{B}T}</math>: <math display="block">\begin{align} v_\text{rms} & = \sqrt{\langle v^2 \rangle} = \left[\int_0^{\infty} v^2 \, f(v) \, dv \right]^{1/2} \\[1ex] & = \left[ 4 \pi \left (\frac{b}{\pi } \right)^{3/2} \int_{0}^{\infty} v^4 e^{-bv^2} dv\right]^{1/2} \\[1ex] & = \left[ 4 \pi \left (\frac{b}{\pi}\right )^{3/2} \frac{3}{8} \left(\frac{\pi}{b^5}\right)^{1/2} \right]^{1/2} = \sqrt{ \frac{3}{2b} } \\[1ex] &= \sqrt { \frac{3k_\text{B}T}{m}} = \sqrt { \frac{3RT}{M} } = \sqrt{ \frac{3}{2} } v_\text{p} \end{align}</math> }} In summary, the typical speeds are related as follows: <math display="block">v_\text{p} \approx 88.6\%\ \langle v \rangle < \langle v \rangle < 108.5\%\ \langle v \rangle \approx v_\text{rms}. </math> The root mean square speed is directly related to the [[speed of sound]] {{mvar|c}} in the gas, by <math display="block">c = \sqrt{\frac{\gamma}{3}} \ v_\mathrm{rms} = \sqrt{\frac{f+2}{3f}}\ v_\mathrm{rms} = \sqrt{\frac{f+2}{2f}}\ v_\text{p} ,</math> where <math display="inline">\gamma = 1 + \frac{2}{f}</math> is the [[adiabatic index]], {{mvar|f}} is the number of [[degrees of freedom]] of the individual gas molecule. For the example above, diatomic nitrogen (approximating [[air]]) at {{val|300|u=K}}, <math>f = 5</math><ref group="note">Nitrogen at room temperature is considered a "rigid" diatomic gas, with two rotational degrees of freedom additional to the three translational ones, and the vibrational degree of freedom not accessible.</ref> and <math display="block">c = \sqrt{\frac{7}{15}}v_\mathrm{rms} \approx 68\%\ v_\mathrm{rms} \approx 84\%\ v_\text{p} \approx 353\ \mathrm{m/s}, </math> the true value for air can be approximated by using the average molar weight of [[Atmospheric chemistry|air]] ({{val|29|u=g/mol}}), yielding {{val|347|u=m/s}} at {{val|300|u=K}} (corrections for variable [[humidity]] are of the order of 0.1% to 0.6%). The average relative velocity <math display="block">\begin{align} v_\text{rel} \equiv \langle |\mathbf{v}_1 - \mathbf{v}_2| \rangle &= \int \! d^3\mathbf{v}_1 \, d^3\mathbf{v}_2 \left|\mathbf{v}_1 - \mathbf{v}_2\right| f(\mathbf{v}_1) f(\mathbf{v}_2) \\[2pt] &= \frac{4}{\sqrt{\pi}}\sqrt{\frac{k_\text{B}T}{m}} = \sqrt{2}\langle v \rangle \end{align}</math> where the three-dimensional velocity distribution is <math display="block"> f(\mathbf{v}) \equiv \left[\frac{2\pi k_\text{B}T}{m}\right]^{-3/2} \exp\left(-\frac{1}{2}\frac{m\mathbf{v}^2}{k_\text{B}T} \right). </math> The integral can easily be done by changing to coordinates <math> \mathbf{u} = \mathbf{v}_1-\mathbf{v}_2 </math> and <math display="inline"> \mathbf{U} = \tfrac{1}{2}(\mathbf{v}_1 + \mathbf{v}_2).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)