Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Maxwell–Boltzmann statistics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Derivation=== We can deduce the Maxwell–Boltzmann distribution from Maxwell–Boltzmann statistics, starting with the Maxwell-Boltzmann probability for energy states and substituting the kinetic energy <math>E=\frac{1}{2} m v^2</math> to express the probability in terms of velocity: :<math> \begin{align} P(E) &=\frac{1}{Z}~\exp \left(\frac{-E }{ k_B T}\right)\\ \rightarrow P(v)&= \frac{1}{Z}~\exp \left(\frac{- m v^2 }{ 2k_B T}\right) \end{align} </math> In 3D, this is proportional to the surface area of a sphere, <math>4\pi v^2</math>. Thus, the probability density function (PDF) for speed <math>v</math> becomes: :<math> f(v) = C \cdot 4\pi v^2 \exp\left(-\frac{m v^2}{2 k_B T}\right) </math> To find the normalization constant <math>C</math>, we require the integral of the probability density function over all possible speeds to be unity: :<math> \begin{align} \int_0^\infty f(v) dv &= 1\\ \rightarrow C \int_0^\infty 4\pi v^2 \exp\left(-\frac{m v^2}{2 k_B T}\right) dv &= 1 \end{align} </math> Evaluating the integral using the known result <math>\int_0^\infty v^2 e^{-a v^2} dv = \frac{\sqrt{\pi}}{4 a^{3/2}}</math>, with <math> a = \frac{m}{2 k_B T}</math>, we obtain: :<math> \begin{align} C \cdot 4\pi \cdot \frac{\sqrt{\pi}}{4\left(\frac{m}{2 k_B T}\right)^{3/2}} = 1 \quad \rightarrow C = \left(\frac{m}{2 \pi k_B T}\right)^{3/2} \end{align} </math> Therefore, the Maxwell–Boltzmann speed distribution is: :<math> f(v) = \left(\frac{m}{2 \pi k_B T}\right)^{3/2} 4\pi v^2 \exp\left(-\frac{m v^2}{2 k_B T}\right) </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)