Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Metric tensor
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Coordinate transformations=== Suppose now that a different parameterization is selected, by allowing {{mvar|u}} and {{mvar|v}} to depend on another pair of variables {{math|''u''β²}} and {{math|''v''β²}}. Then the analog of ({{EquationNote|2}}) for the new variables is {{NumBlk|:|<math> E' = \vec r_{u'} \cdot \vec r_{u'}, \quad F' = \vec r_{u'} \cdot \vec r_{v'}, \quad G' = \vec r_{v'} \cdot \vec r_{v'}. </math>|{{EquationRef|2'}}}} The [[chain rule]] relates {{math|''E''β²}}, {{math|''F''β²}}, and {{math|''G''β²}} to {{mvar|E}}, {{mvar|F}}, and {{mvar|G}} via the [[matrix (mathematics)|matrix]] equation {{NumBlk|:|<math>\begin{bmatrix} E' & F' \\ F' & G' \end{bmatrix} = \begin{bmatrix} \frac{\partial u}{\partial u'} & \frac{\partial u}{\partial v'} \\ \frac{\partial v}{\partial u'} & \frac{\partial v}{\partial v'} \end{bmatrix}^\mathsf{T} \begin{bmatrix} E & F \\ F & G \end{bmatrix} \begin{bmatrix} \frac{\partial u}{\partial u'} & \frac{\partial u}{\partial v'} \\ \frac{\partial v}{\partial u'} & \frac{\partial v}{\partial v'} \end{bmatrix} </math>|{{EquationRef|3}}}} where the superscript T denotes the [[matrix transpose]]. The matrix with the coefficients {{mvar|E}}, {{mvar|F}}, and {{mvar|G}} arranged in this way therefore transforms by the [[Jacobian matrix]] of the coordinate change :<math> J = \begin{bmatrix} \frac{\partial u}{\partial u'} & \frac{\partial u}{\partial v'} \\ \frac{\partial v}{\partial u'} & \frac{\partial v}{\partial v'} \end{bmatrix}\,.</math> A matrix which transforms in this way is one kind of what is called a [[tensor]]. The matrix :<math>\begin{bmatrix} E & F \\ F & G \end{bmatrix}</math> with the transformation law ({{EquationNote|3}}) is known as the metric tensor of the surface.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)