Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Microprocessor
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Speed and power considerations=== [[File:Intel i9-9900K.jpg|thumb|Intel Core i9-9900K (2018, based on [[Coffee Lake]])]] Microprocessors can be selected for differing applications based on their word size, which is a measure of their complexity. Longer word sizes allow each [[clock cycle]] of a processor to carry out more computation, but correspond to physically larger integrated circuit dies with higher standby and operating [[power consumption]].<ref name="cmicrotek">CMicrotek. [http://cmicrotek.com/wordpress_159256135/?p=22 "8-bit vs 32-bit Micros"] {{webarchive|url=https://web.archive.org/web/20140714123158/http://cmicrotek.com/wordpress_159256135/?p=22 |date=2014-07-14 }}.</ref> 4-, 8- or 12-bit processors are widely integrated into microcontrollers operating embedded systems. Where a system is expected to handle larger volumes of data or require a more flexible [[user interface]], 16-, 32- or 64-bit processors are used. An 8- or [[16-bit]] processor may be selected over a 32-bit processor for [[system on a chip]] or microcontroller applications that require extremely [[low-power electronics]], or are part of a [[mixed-signal integrated circuit]] with noise-sensitive on-chip [[analog electronics]] such as high-resolution analog to digital converters, or both. Some people say that running 32-bit arithmetic on an 8-bit chip could end up using more power, as the chip must execute software with multiple instructions.<ref>{{cite web|title=Managing the Impact of Increasing Microprocessor Power Consumption|url=http://www.ruf.rice.edu/~mobile/elec518/readings/Intel/gunther01power.pdf|website=[[Rice University]]|access-date=October 1, 2015|url-status=live|archive-url=https://web.archive.org/web/20151003085353/http://www.ruf.rice.edu/~mobile/elec518/readings/Intel/gunther01power.pdf|archive-date=October 3, 2015}}</ref> However, others say that modern 8-bit chips are always more power-efficient than 32-bit chips when running equivalent software routines.<ref name="freeman" >Wayne Freeman. [https://www.electronicdesign.com/technologies/microcontrollers/article/21802087/11-myths-about-8bit-microcontrollers "11 Myths About 8-Bit Microcontrollers"] {{Webarchive|url=https://web.archive.org/web/20220812175959/https://www.electronicdesign.com/technologies/microcontrollers/article/21802087/11-myths-about-8bit-microcontrollers |date=12 August 2022 }}. 2016. quote: "Basically, by getting your work done faster, you can put the CPU in sleep mode for longer periods of time. Thus, 32-bit MCUs are more power-efficient than 8-bit MCUs, right? Wrong."</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)